afaji's picture
fresh-2-layer-medmcqa100000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
a417e37 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fresh-2-layer-medmcqa100000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
    results: []

fresh-2-layer-medmcqa100000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 207.8812
  • Accuracy: 0.4391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 321
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.03 100 200.5408 0.246
No log 0.06 200 200.4924 0.318
No log 0.1 300 189.5536 0.362
No log 0.13 400 213.1945 0.408
142.2534 0.16 500 200.2095 0.41
142.2534 0.19 600 183.4482 0.434
142.2534 0.22 700 181.7445 0.446
142.2534 0.26 800 174.5725 0.446
142.2534 0.29 900 172.2695 0.456
95.7189 0.32 1000 189.9845 0.446
95.7189 0.35 1100 200.3398 0.446
95.7189 0.38 1200 176.7680 0.422
95.7189 0.42 1300 184.6660 0.424
95.7189 0.45 1400 206.7043 0.466
83.1508 0.48 1500 188.5695 0.454
83.1508 0.51 1600 206.9309 0.452
83.1508 0.54 1700 186.1902 0.454
83.1508 0.58 1800 191.8201 0.45
83.1508 0.61 1900 185.2374 0.466

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0