|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fresh-2-layer-medmcqa100000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fresh-2-layer-medmcqa100000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 207.8812 |
|
- Accuracy: 0.4391 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 321 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.03 | 100 | 200.5408 | 0.246 | |
|
| No log | 0.06 | 200 | 200.4924 | 0.318 | |
|
| No log | 0.1 | 300 | 189.5536 | 0.362 | |
|
| No log | 0.13 | 400 | 213.1945 | 0.408 | |
|
| 142.2534 | 0.16 | 500 | 200.2095 | 0.41 | |
|
| 142.2534 | 0.19 | 600 | 183.4482 | 0.434 | |
|
| 142.2534 | 0.22 | 700 | 181.7445 | 0.446 | |
|
| 142.2534 | 0.26 | 800 | 174.5725 | 0.446 | |
|
| 142.2534 | 0.29 | 900 | 172.2695 | 0.456 | |
|
| 95.7189 | 0.32 | 1000 | 189.9845 | 0.446 | |
|
| 95.7189 | 0.35 | 1100 | 200.3398 | 0.446 | |
|
| 95.7189 | 0.38 | 1200 | 176.7680 | 0.422 | |
|
| 95.7189 | 0.42 | 1300 | 184.6660 | 0.424 | |
|
| 95.7189 | 0.45 | 1400 | 206.7043 | 0.466 | |
|
| 83.1508 | 0.48 | 1500 | 188.5695 | 0.454 | |
|
| 83.1508 | 0.51 | 1600 | 206.9309 | 0.452 | |
|
| 83.1508 | 0.54 | 1700 | 186.1902 | 0.454 | |
|
| 83.1508 | 0.58 | 1800 | 191.8201 | 0.45 | |
|
| 83.1508 | 0.61 | 1900 | 185.2374 | 0.466 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|