metadata
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: AraBART-finetuned-ar
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xlsum
type: xlsum
args: arabic
metrics:
- name: Rouge1
type: rouge
value: 2.2459
AraBART-finetuned-ar
This model is a fine-tuned version of moussaKam/AraBART on the xlsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.3785
- Rouge1: 2.2459
- Rouge2: 0.0
- Rougel: 2.2459
- Rougelsum: 2.2459
- Gen Len: 19.695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.6
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 0.98 | 32 | 2.7774 | 1.0638 | 0.0 | 1.0638 | 1.182 | 19.5177 |
No log | 1.98 | 64 | 2.4730 | 1.182 | 0.0 | 1.3002 | 1.182 | 19.8121 |
No log | 2.98 | 96 | 2.4129 | 2.3641 | 0.3546 | 2.3641 | 2.3641 | 19.8298 |
No log | 3.98 | 128 | 2.3724 | 2.1277 | 0.3546 | 2.1277 | 2.1277 | 19.8121 |
No log | 4.98 | 160 | 2.3560 | 1.8913 | 0.3546 | 1.8913 | 1.8913 | 19.805 |
No log | 5.98 | 192 | 2.3574 | 1.5366 | 0.0 | 1.5366 | 1.6548 | 19.7979 |
No log | 6.98 | 224 | 2.3676 | 2.1277 | 0.3546 | 2.2459 | 2.1277 | 19.6348 |
No log | 7.98 | 256 | 2.3656 | 2.0095 | 0.0 | 2.0095 | 2.0095 | 19.844 |
No log | 8.98 | 288 | 2.3751 | 2.2459 | 0.0 | 2.3641 | 2.2459 | 19.6738 |
No log | 9.98 | 320 | 2.3785 | 2.2459 | 0.0 | 2.2459 | 2.2459 | 19.695 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6