|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: AraBART-finetuned-ar |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
args: arabic |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 2.2459 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AraBART-finetuned-ar |
|
|
|
This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3785 |
|
- Rouge1: 2.2459 |
|
- Rouge2: 0.0 |
|
- Rougel: 2.2459 |
|
- Rougelsum: 2.2459 |
|
- Gen Len: 19.695 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.6 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 0.98 | 32 | 2.7774 | 1.0638 | 0.0 | 1.0638 | 1.182 | 19.5177 | |
|
| No log | 1.98 | 64 | 2.4730 | 1.182 | 0.0 | 1.3002 | 1.182 | 19.8121 | |
|
| No log | 2.98 | 96 | 2.4129 | 2.3641 | 0.3546 | 2.3641 | 2.3641 | 19.8298 | |
|
| No log | 3.98 | 128 | 2.3724 | 2.1277 | 0.3546 | 2.1277 | 2.1277 | 19.8121 | |
|
| No log | 4.98 | 160 | 2.3560 | 1.8913 | 0.3546 | 1.8913 | 1.8913 | 19.805 | |
|
| No log | 5.98 | 192 | 2.3574 | 1.5366 | 0.0 | 1.5366 | 1.6548 | 19.7979 | |
|
| No log | 6.98 | 224 | 2.3676 | 2.1277 | 0.3546 | 2.2459 | 2.1277 | 19.6348 | |
|
| No log | 7.98 | 256 | 2.3656 | 2.0095 | 0.0 | 2.0095 | 2.0095 | 19.844 | |
|
| No log | 8.98 | 288 | 2.3751 | 2.2459 | 0.0 | 2.3641 | 2.2459 | 19.6738 | |
|
| No log | 9.98 | 320 | 2.3785 | 2.2459 | 0.0 | 2.2459 | 2.2459 | 19.695 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|