ahmeddbahaa's picture
update model card README.md
3104a1c
|
raw
history blame
2.68 kB
metadata
tags:
  - summarization
  - ar
  - encoder-decoder
  - roberta
  - xlmroberta2xlmroberta
  - Abstractive Summarization
  - generated_from_trainer
datasets:
  - wiki_lingua
model-index:
  - name: xlmroberta2xlmroberta-finetuned-ar-wikilingua
    results: []

xlmroberta2xlmroberta-finetuned-ar-wikilingua

This model is a fine-tuned version of on the wiki_lingua dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7757
  • Rouge-1: 11.2
  • Rouge-2: 1.96
  • Rouge-l: 10.28
  • Gen Len: 19.8
  • Bertscore: 66.27

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge-1 Rouge-2 Rouge-l Gen Len Bertscore
8.03 1.0 312 7.3208 0.19 0.0 0.19 20.0 54.84
7.2309 2.0 624 7.1107 1.17 0.03 1.16 20.0 60.0
7.0752 3.0 936 7.0061 2.58 0.15 2.55 20.0 63.52
6.7538 4.0 1248 6.4189 5.75 0.46 5.55 19.95 62.83
6.1513 5.0 1560 5.8402 8.46 1.04 8.08 19.2 64.25
5.6639 6.0 1872 5.3938 8.62 1.17 8.16 19.28 64.81
5.2857 7.0 2184 5.0719 9.34 1.41 8.61 19.71 65.29
5.027 8.0 2496 4.9047 10.42 1.52 9.57 19.57 65.75
4.8747 9.0 2808 4.8032 10.79 1.71 9.91 19.42 66.2
4.7855 10.0 3120 4.7757 11.01 1.73 10.04 19.55 66.24

Framework versions

  • Transformers 4.19.4
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1