|
--- |
|
tags: |
|
- summarization |
|
- ar |
|
- encoder-decoder |
|
- roberta |
|
- xlmroberta2xlmroberta |
|
- Abstractive Summarization |
|
- generated_from_trainer |
|
datasets: |
|
- wiki_lingua |
|
model-index: |
|
- name: xlmroberta2xlmroberta-finetuned-ar-wikilingua |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlmroberta2xlmroberta-finetuned-ar-wikilingua |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7757 |
|
- Rouge-1: 11.2 |
|
- Rouge-2: 1.96 |
|
- Rouge-l: 10.28 |
|
- Gen Len: 19.8 |
|
- Bertscore: 66.27 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- num_epochs: 10 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| |
|
| 8.03 | 1.0 | 312 | 7.3208 | 0.19 | 0.0 | 0.19 | 20.0 | 54.84 | |
|
| 7.2309 | 2.0 | 624 | 7.1107 | 1.17 | 0.03 | 1.16 | 20.0 | 60.0 | |
|
| 7.0752 | 3.0 | 936 | 7.0061 | 2.58 | 0.15 | 2.55 | 20.0 | 63.52 | |
|
| 6.7538 | 4.0 | 1248 | 6.4189 | 5.75 | 0.46 | 5.55 | 19.95 | 62.83 | |
|
| 6.1513 | 5.0 | 1560 | 5.8402 | 8.46 | 1.04 | 8.08 | 19.2 | 64.25 | |
|
| 5.6639 | 6.0 | 1872 | 5.3938 | 8.62 | 1.17 | 8.16 | 19.28 | 64.81 | |
|
| 5.2857 | 7.0 | 2184 | 5.0719 | 9.34 | 1.41 | 8.61 | 19.71 | 65.29 | |
|
| 5.027 | 8.0 | 2496 | 4.9047 | 10.42 | 1.52 | 9.57 | 19.57 | 65.75 | |
|
| 4.8747 | 9.0 | 2808 | 4.8032 | 10.79 | 1.71 | 9.91 | 19.42 | 66.2 | |
|
| 4.7855 | 10.0 | 3120 | 4.7757 | 11.01 | 1.73 | 10.04 | 19.55 | 66.24 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.4 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|