llm2024_1215_2 / README.md
akiyoshiR23's picture
Update README.md
4ad95de verified
---
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
---
elyza-tasks-100-TV_0.jsonl の回答モデルの作成のためのコードです。
サンプルコードに対して以下の変更を行いスコア改善を試みました。
- データセットを ichikara-instruction-003 の全てのファイルを利用するよう変更
- 学習率(learning_rate) を 2e-5へ変更
- 累積勾配(gradient_accumulation_steps) を 4 に変更
- RoRAのRANK(LoraConfig r)を 32 に変更
自宅のPC(RTX3090) でコードを実行し、解答を出力しました。
```python
import wandb
import os
WANDB_API_KEY = "my-token"
wandb.login(key=WANDB_API_KEY)
wandb.init(project='llm2024-competition')
HF_TOKEN = "my-token"
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
logging,
)
from peft import (
LoraConfig,
PeftModel,
get_peft_model,
)
import os, torch, gc
from datasets import load_dataset
import bitsandbytes as bnb
from trl import SFTTrainer
SEED_VALUE = 42
base_model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-finetune" #Fine-Tuningしたモデルにつけたい名前
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # nf4は通常のINT4より精度が高く、ニューラルネットワークの分布に最適です
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="cuda:0" #auto"
)
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
def find_all_linear_names(model):
cls = bnb.nn.Linear4bit # 4bit量子化線形層クラスを指定
lora_module_names = set() # ここに取得した線形層を保持します。
# モデル内の全てのモジュールを探索します
for name, module in model.named_modules():
if isinstance(module, cls): # モジュールが4bit量子化線形層の場合
names = name.split('.') # モジュールの名前を分割 (ネストされてる際などに対処)
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) # 最下層の名前をlora_module_namesに追加
# 'lm_head' は16ビット演算の際に除外する必要があるため、lora_module_namesから削除
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names) # lora_module_namesをリストに変換して返します。
modules = find_all_linear_names(model)
peft_config = LoraConfig(
r=32, #16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=modules,
)
model = get_peft_model(model, peft_config)
from datasets import concatenate_datasets, DatasetDict
# 全てのデータセットを読み込み
dataset0 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json")
dataset1 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json")
dataset2 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.2.json")
dataset3 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.2.json")
dataset4 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.1.json")
dataset5 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.1.json")
dataset6 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-002-1.json")
dataset7 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-003-1.json")
datasets_to_concatenate = [
dataset0["train"],
dataset1["train"],
dataset2["train"],
dataset3["train"],
dataset4["train"],
dataset5["train"],
dataset6["train"],
dataset7["train"]
]
concatenated_train_dataset = concatenate_datasets(datasets_to_concatenate)
dataset_all = DatasetDict({
"train": concatenated_train_dataset
})
# 結合したデータを使用
dataset=dataset_all
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
input = examples["text"] # 入力データ
output = examples["output"] # 出力データ
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass
# # 各データにフォーマットを適用
dataset = dataset.map(
formatting_prompts_func,
num_proc= 4, # 並列処理数を指定
)
# データをtrainデータとtestデータに分割 (test_sizeの比率に)
dataset = dataset["train"].train_test_split(test_size=0.1, seed=SEED_VALUE)
training_arguments = TrainingArguments(
output_dir=new_model_id,
per_device_train_batch_size=1, #
gradient_accumulation_steps=4, # def: 2
optim="paged_adamw_32bit",
num_train_epochs=1, # def: 1
logging_strategy="steps",
logging_steps=10,
warmup_steps=10,
save_steps=100,
save_total_limit = 2,
max_steps = -1, # def:-1
learning_rate=2e-5, # def:5e-5,
fp16= False,
bf16= False,
seed = SEED_VALUE,
group_by_length=True,
report_to="wandb"
)
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
peft_config=peft_config,
max_seq_length= 512,
dataset_text_field="formatted_text",
tokenizer=tokenizer,
args=training_arguments,
packing= False,
)
model.config.use_cache = False # キャッシュ機能を無効化
trainer.train() # トレーニングを実行
from datetime import datetime
# 現在の日時を取得
now = datetime.now()
# フォーマットを指定して日時を文字列に変換
formatted_date = now.strftime("%Y%m%d_%H%M%S") # 例: "20241214_153045"
print(formatted_date)
# タスクとなるデータの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# モデルによるタスクの推論。
from tqdm import tqdm
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# こちらで生成されたjsolを提出してください。
# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
# 必須なのはtask_idとoutputとなります。
import re
jsonl_id = re.sub(".*/", "", new_model_id)
with open(f"./{jsonl_id}-outputs-{formatted_date}.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
# モデルとトークナイザーをHugging Faceにアップロード
model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
tokenizer.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
```
---
library_name: transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]