|
--- |
|
datasets: |
|
- kinokokoro/ichikara-instruction-003 |
|
language: |
|
- ja |
|
base_model: |
|
- llm-jp/llm-jp-3-13b |
|
--- |
|
|
|
elyza-tasks-100-TV_0.jsonl の回答モデルの作成のためのコードです。 |
|
サンプルコードに対して以下の変更を行いスコア改善を試みました。 |
|
- データセットを ichikara-instruction-003 の全てのファイルを利用するよう変更 |
|
- 学習率(learning_rate) を 2e-5へ変更 |
|
- 累積勾配(gradient_accumulation_steps) を 4 に変更 |
|
- RoRAのRANK(LoraConfig r)を 32 に変更 |
|
|
|
自宅のPC(RTX3090) でコードを実行し、解答を出力しました。 |
|
|
|
```python |
|
|
|
import wandb |
|
import os |
|
|
|
WANDB_API_KEY = "my-token" |
|
wandb.login(key=WANDB_API_KEY) |
|
wandb.init(project='llm2024-competition') |
|
|
|
HF_TOKEN = "my-token" |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
TrainingArguments, |
|
logging, |
|
) |
|
from peft import ( |
|
LoraConfig, |
|
PeftModel, |
|
get_peft_model, |
|
) |
|
import os, torch, gc |
|
from datasets import load_dataset |
|
import bitsandbytes as bnb |
|
from trl import SFTTrainer |
|
|
|
SEED_VALUE = 42 |
|
|
|
base_model_id = "llm-jp/llm-jp-3-13b" |
|
new_model_id = "llm-jp-3-13b-finetune" #Fine-Tuningしたモデルにつけたい名前 |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", # nf4は通常のINT4より精度が高く、ニューラルネットワークの分布に最適です |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
quantization_config=bnb_config, |
|
device_map="cuda:0" #auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) |
|
|
|
|
|
def find_all_linear_names(model): |
|
cls = bnb.nn.Linear4bit # 4bit量子化線形層クラスを指定 |
|
lora_module_names = set() # ここに取得した線形層を保持します。 |
|
|
|
# モデル内の全てのモジュールを探索します |
|
for name, module in model.named_modules(): |
|
if isinstance(module, cls): # モジュールが4bit量子化線形層の場合 |
|
names = name.split('.') # モジュールの名前を分割 (ネストされてる際などに対処) |
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) # 最下層の名前をlora_module_namesに追加 |
|
|
|
# 'lm_head' は16ビット演算の際に除外する必要があるため、lora_module_namesから削除 |
|
if 'lm_head' in lora_module_names: |
|
lora_module_names.remove('lm_head') |
|
|
|
return list(lora_module_names) # lora_module_namesをリストに変換して返します。 |
|
|
|
modules = find_all_linear_names(model) |
|
|
|
peft_config = LoraConfig( |
|
r=32, #16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=modules, |
|
) |
|
|
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
from datasets import concatenate_datasets, DatasetDict |
|
|
|
# 全てのデータセットを読み込み |
|
dataset0 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json") |
|
dataset1 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-1.json") |
|
dataset2 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.2.json") |
|
dataset3 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.2.json") |
|
dataset4 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-2.1.json") |
|
dataset5 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-001-5.1.json") |
|
dataset6 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-002-1.json") |
|
dataset7 = load_dataset("json", data_files="./Distribution20241221_all/ichikara-instruction-003-003-1.json") |
|
|
|
datasets_to_concatenate = [ |
|
dataset0["train"], |
|
dataset1["train"], |
|
dataset2["train"], |
|
dataset3["train"], |
|
dataset4["train"], |
|
dataset5["train"], |
|
dataset6["train"], |
|
dataset7["train"] |
|
] |
|
|
|
concatenated_train_dataset = concatenate_datasets(datasets_to_concatenate) |
|
|
|
dataset_all = DatasetDict({ |
|
"train": concatenated_train_dataset |
|
}) |
|
|
|
# 結合したデータを使用 |
|
dataset=dataset_all |
|
|
|
# 学習時のプロンプトフォーマットの定義 |
|
prompt = """### 指示 |
|
{} |
|
### 回答 |
|
{}""" |
|
|
|
|
|
""" |
|
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる |
|
""" |
|
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン) |
|
def formatting_prompts_func(examples): |
|
input = examples["text"] # 入力データ |
|
output = examples["output"] # 出力データ |
|
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成 |
|
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す |
|
pass |
|
|
|
# # 各データにフォーマットを適用 |
|
dataset = dataset.map( |
|
formatting_prompts_func, |
|
num_proc= 4, # 並列処理数を指定 |
|
) |
|
|
|
# データをtrainデータとtestデータに分割 (test_sizeの比率に) |
|
dataset = dataset["train"].train_test_split(test_size=0.1, seed=SEED_VALUE) |
|
|
|
|
|
training_arguments = TrainingArguments( |
|
output_dir=new_model_id, |
|
per_device_train_batch_size=1, # |
|
gradient_accumulation_steps=4, # def: 2 |
|
optim="paged_adamw_32bit", |
|
num_train_epochs=1, # def: 1 |
|
logging_strategy="steps", |
|
logging_steps=10, |
|
warmup_steps=10, |
|
save_steps=100, |
|
save_total_limit = 2, |
|
max_steps = -1, # def:-1 |
|
learning_rate=2e-5, # def:5e-5, |
|
fp16= False, |
|
bf16= False, |
|
seed = SEED_VALUE, |
|
group_by_length=True, |
|
report_to="wandb" |
|
) |
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
peft_config=peft_config, |
|
max_seq_length= 512, |
|
dataset_text_field="formatted_text", |
|
tokenizer=tokenizer, |
|
args=training_arguments, |
|
packing= False, |
|
) |
|
|
|
model.config.use_cache = False # キャッシュ機能を無効化 |
|
trainer.train() # トレーニングを実行 |
|
|
|
from datetime import datetime |
|
|
|
# 現在の日時を取得 |
|
now = datetime.now() |
|
|
|
# フォーマットを指定して日時を文字列に変換 |
|
formatted_date = now.strftime("%Y%m%d_%H%M%S") # 例: "20241214_153045" |
|
|
|
print(formatted_date) |
|
|
|
# タスクとなるデータの読み込み。 |
|
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 |
|
import json |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
|
|
# モデルによるタスクの推論。 |
|
from tqdm import tqdm |
|
|
|
results = [] |
|
for data in tqdm(datasets): |
|
|
|
input = data["input"] |
|
|
|
prompt = f"""### 指示 |
|
{input} |
|
### 回答 |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
attention_mask = torch.ones_like(tokenized_input) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
attention_mask=attention_mask, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "input": input, "output": output}) |
|
|
|
# こちらで生成されたjsolを提出してください。 |
|
# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。 |
|
# 必須なのはtask_idとoutputとなります。 |
|
import re |
|
jsonl_id = re.sub(".*/", "", new_model_id) |
|
with open(f"./{jsonl_id}-outputs-{formatted_date}.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters |
|
f.write('\n') |
|
|
|
# モデルとトークナイザーをHugging Faceにアップロード |
|
model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving |
|
tokenizer.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving |
|
|
|
|
|
|
|
``` |
|
|
|
|
|
|
|
--- |
|
library_name: transformers |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |