alex-miller's picture
End of training
4b7faf7 verified
metadata
license: apache-2.0
base_model: alex-miller/ODABert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cva-quant-weighted-classifier
    results: []

cva-quant-weighted-classifier

This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1539
  • Accuracy: 0.9643
  • F1: 0.9630
  • Precision: 0.9286
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6832 1.0 4 0.6577 0.6786 0.7097 0.6111 0.8462
0.6332 2.0 8 0.6121 0.8571 0.8462 0.8462 0.8462
0.587 3.0 12 0.5636 0.8571 0.8462 0.8462 0.8462
0.5308 4.0 16 0.5053 0.8571 0.8462 0.8462 0.8462
0.4738 5.0 20 0.4425 0.8929 0.8800 0.9167 0.8462
0.3972 6.0 24 0.3848 0.8929 0.8800 0.9167 0.8462
0.3347 7.0 28 0.3371 0.8929 0.8800 0.9167 0.8462
0.2769 8.0 32 0.2950 0.8929 0.8800 0.9167 0.8462
0.2321 9.0 36 0.2621 0.8929 0.8800 0.9167 0.8462
0.1847 10.0 40 0.2343 0.8929 0.8800 0.9167 0.8462
0.1524 11.0 44 0.2120 0.8929 0.8800 0.9167 0.8462
0.1374 12.0 48 0.1935 0.8929 0.8800 0.9167 0.8462
0.1112 13.0 52 0.1792 0.9286 0.9231 0.9231 0.9231
0.0881 14.0 56 0.1687 0.9643 0.9630 0.9286 1.0
0.0785 15.0 60 0.1623 0.9643 0.9630 0.9286 1.0
0.065 16.0 64 0.1585 0.9643 0.9630 0.9286 1.0
0.0625 17.0 68 0.1570 0.9643 0.9630 0.9286 1.0
0.0566 18.0 72 0.1554 0.9643 0.9630 0.9286 1.0
0.0587 19.0 76 0.1544 0.9643 0.9630 0.9286 1.0
0.0537 20.0 80 0.1539 0.9643 0.9630 0.9286 1.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1