|
--- |
|
license: apache-2.0 |
|
base_model: alex-miller/ODABert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: cva-quant-weighted-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cva-quant-weighted-classifier |
|
|
|
This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1539 |
|
- Accuracy: 0.9643 |
|
- F1: 0.9630 |
|
- Precision: 0.9286 |
|
- Recall: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-06 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6832 | 1.0 | 4 | 0.6577 | 0.6786 | 0.7097 | 0.6111 | 0.8462 | |
|
| 0.6332 | 2.0 | 8 | 0.6121 | 0.8571 | 0.8462 | 0.8462 | 0.8462 | |
|
| 0.587 | 3.0 | 12 | 0.5636 | 0.8571 | 0.8462 | 0.8462 | 0.8462 | |
|
| 0.5308 | 4.0 | 16 | 0.5053 | 0.8571 | 0.8462 | 0.8462 | 0.8462 | |
|
| 0.4738 | 5.0 | 20 | 0.4425 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.3972 | 6.0 | 24 | 0.3848 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.3347 | 7.0 | 28 | 0.3371 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.2769 | 8.0 | 32 | 0.2950 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.2321 | 9.0 | 36 | 0.2621 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.1847 | 10.0 | 40 | 0.2343 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.1524 | 11.0 | 44 | 0.2120 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.1374 | 12.0 | 48 | 0.1935 | 0.8929 | 0.8800 | 0.9167 | 0.8462 | |
|
| 0.1112 | 13.0 | 52 | 0.1792 | 0.9286 | 0.9231 | 0.9231 | 0.9231 | |
|
| 0.0881 | 14.0 | 56 | 0.1687 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.0785 | 15.0 | 60 | 0.1623 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.065 | 16.0 | 64 | 0.1585 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.0625 | 17.0 | 68 | 0.1570 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.0566 | 18.0 | 72 | 0.1554 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.0587 | 19.0 | 76 | 0.1544 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
| 0.0537 | 20.0 | 80 | 0.1539 | 0.9643 | 0.9630 | 0.9286 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|