|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-ka-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: ka |
|
split: validation |
|
args: ka |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8505682876839947 |
|
- name: Recall |
|
type: recall |
|
value: 0.8702816057519472 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8603120330609663 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9424682155180856 |
|
language: |
|
- ka |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-ka-ner |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2031 |
|
- Precision: 0.8506 |
|
- Recall: 0.8703 |
|
- F1: 0.8603 |
|
- Accuracy: 0.9425 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5349 | 1.0 | 625 | 0.2377 | 0.8302 | 0.8218 | 0.8260 | 0.9287 | |
|
| 0.2353 | 2.0 | 1250 | 0.2037 | 0.8556 | 0.8536 | 0.8546 | 0.9394 | |
|
| 0.1782 | 3.0 | 1875 | 0.2031 | 0.8506 | 0.8703 | 0.8603 | 0.9425 | |
|
|
|
## Metrics per category |
|
|
|
{'LOC': {'precision': 0.8558191459670667, |
|
'recall': 0.9074874223142941, |
|
'f1': 0.8808962941683425, |
|
'number': 16895}, |
|
'ORG': {'precision': 0.7917612346799818, |
|
'recall': 0.7510226049515608, |
|
'f1': 0.7708540492763231, |
|
'number': 9290}, |
|
'PER': {'precision': 0.8896882494004796, |
|
'recall': 0.9157884743188076, |
|
'f1': 0.9025497076023392, |
|
'number': 10533}, |
|
'overall_precision': 0.8505682876839947, |
|
'overall_recall': 0.8702816057519472, |
|
'overall_f1': 0.8603120330609663, |
|
'overall_accuracy': 0.9424682155180856} |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |