Safetensors
English
olmo2
File size: 11,143 Bytes
e62014f
 
 
 
d35a2bd
e62014f
 
 
e183f8f
01777cb
 
4ad5f80
e183f8f
 
4ad5f80
e183f8f
4ad5f80
e183f8f
83f13fa
 
e183f8f
01777cb
 
4ad5f80
66afa12
4ad5f80
 
 
 
 
70a9d77
4ad5f80
 
 
cc5ca20
4ad5f80
35a7ed2
 
 
 
 
 
01777cb
43f5c98
 
83f13fa
43f5c98
 
22fbf33
 
43f5c98
 
 
 
 
 
 
640eb46
43f5c98
 
83f13fa
 
22fbf33
83f13fa
 
 
 
 
 
 
43f5c98
0fdca51
 
01777cb
 
 
22fbf33
01777cb
 
 
 
 
22fbf33
01777cb
 
 
43f5c98
 
 
 
 
 
 
 
 
 
 
 
 
 
01777cb
 
 
 
 
 
4ad5f80
 
01777cb
 
 
 
 
 
 
 
 
4ad5f80
1e0ba4a
 
01777cb
 
 
4ad5f80
22fbf33
bb91cbe
22fbf33
bb91cbe
22fbf33
 
 
 
 
bb91cbe
22fbf33
bb91cbe
22fbf33
 
bb91cbe
22fbf33
 
 
 
 
 
 
01777cb
 
 
22fbf33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01777cb
 
 
7b1b2c7
01777cb
 
1e0ba4a
4ad5f80
01777cb
 
4ad5f80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
license: apache-2.0
datasets:
- allenai/dolmino-mix-1124
- allenai/olmo-mix-1124
language:
- en
---

## Model Details

<img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px" style="margin-left:'auto' margin-right:'auto' display:'block'">


# Model Card for OLMo 2 7B

We introduce OLMo 2, a new family of 7B and 13B models featuring a 9-point increase in MMLU, among other evaluation improvements, compared to the original [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) model. These gains come from training on [OLMo-mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124) and [Dolmino-mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124) datasets and staged training approach.

OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models. 
These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details. 

| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|------|--------|---------|-------------|-----------------|----------------|
| [OLMo 2-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) | 4 Trillion   | 32     | 4096        | 32              |  4096  |
| [OLMo 2-13B](https://huggingface.co/allenai/OLMo-2-1124-13B) | 5 Trillion   | 40     | 5120        | 40              |  4096  |

The core models released in this batch include the following:

| **Stage**           | **OLMo 2 7B**                                                                                          | **OLMo 2 13B**                                                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model**       | [allenai/OLMo-2-1124-7B](https://huggingface.co/allenai/OLMo-2-1124-7B)                                | [allenai/OLMo-2-1124-13B](https://huggingface.co/allenai/OLMo-2-1124-13B)                             |
| **SFT**              | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT)                | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT)              |
| **DPO**              | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO)                | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO)              |
| **Final Models (RLVR)** | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct)                        | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct)                      |
| **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM)                                                     | (Same as 7B)                                                     |

## Installation

OLMo 2 will be supported in the next version of Transformers, and you need to install it from the main branch using:
```bash
pip install --upgrade git+https://github.com/huggingface/transformers.git
```

## Inference

You can use OLMo with the standard HuggingFace transformers library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-7B")
message = ["Language modeling is "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
>> 'Language modeling is  a key component of any text-based application, but its effectiveness...'
```

For faster performance, you can quantize the model using the following method:
```python
AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B", 
    torch_dtype=torch.float16, 
    load_in_8bit=True)  # Requires bitsandbytes
```
The quantized model is more sensitive to data types and CUDA operations. To avoid potential issues, it's recommended to pass the inputs directly to CUDA using:
```python
inputs.input_ids.to('cuda')
```

We have released checkpoints for these models. For pretraining, the naming convention is `stepXXX-tokensYYYB`. For checkpoints with ingredients of the soup, the naming convention is `stage2-ingredientN-stepXXX-tokensYYYB`


To load a specific model revision with HuggingFace, simply add the argument `revision`:
```bash
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B", revision="step1000-tokens5B")
```

Or, you can access all the revisions for the models via the following code snippet:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("allenai/OLMo-2-1124-7B")
branches = [b.name for b in out.branches]
```

### Fine-tuning
Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
1. Fine-tune with the OLMo repository:
```bash
torchrun --nproc_per_node=8 scripts/train.py {path_to_train_config} \
    --data.paths=[{path_to_data}/input_ids.npy] \
    --data.label_mask_paths=[{path_to_data}/label_mask.npy] \
    --load_path={path_to_checkpoint} \
    --reset_trainer_state
```
For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?tab=readme-ov-file#fine-tuning).

2. Further fine-tuning support is being developing in AI2's Open Instruct repository. Details are [here](https://github.com/allenai/open-instruct).

### Model Description

- **Developed by:** Allen Institute for AI (Ai2)
- **Model type:** a Transformer style autoregressive language model.
- **Language(s) (NLP):** English
- **License:** The code and model are released under Apache 2.0.
- **Contact:** Technical inquiries: `olmo@allenai.org`. Press: `press@allenai.org`
- **Date cutoff:** Dec. 2023.


### Model Sources

- **Project Page:** https://allenai.org/olmo
- **Repositories:** 
    - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
    - Evaluation code: https://github.com/allenai/OLMo-Eval
    - Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** Coming soon
<!-- - **Technical blog post:** https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d  -->
<!-- - **W&B Logs:** [pretraining](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B), [annealing](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B-anneal) -->


## Evaluation
Core model results for OLMo 2 7B and 13B models are found below.

| Model | Train FLOPs | Average | ARC/C | HSwag | WinoG | MMLU | DROP | NQ | AGIEval | GSM8k | MMLUPro | TriviaQA |
|-------------------|------------|---------|--------|--------|--------|-------|-------|-----|----------|--------|-----------|-----------|
| *Open weights models:* |
| Llama-2-13B | 1.6·10²³ | 54.1 | 67.3 | 83.9 | 74.9 | 55.7 | 45.6 | 38.4 | 41.5 | 28.1 | 23.9 | 81.3 |
| Mistral-7B-v0.3 | n/a | 58.8 | 78.3 | 83.1 | 77.7 | 63.5 | 51.8 | 37.2 | 47.3 | 40.1 | 30 | 79.3 |
| Llama-3.1-8B | 7.2·10²³ | 61.8 | 79.5 | 81.6 | 76.6 | 66.9 | 56.4 | 33.9 | 51.3 | 56.5 | 34.7 | 80.3 |
| Mistral-Nemo-12B | n/a | 66.9 | 85.2 | 85.6 | 81.5 | 69.5 | 69.2 | 39.7 | 54.7 | 62.1 | 36.7 | 84.6 |
| Qwen-2.5-7B | 8.2·10²³ | 67.4 | 89.5 | 89.7 | 74.2 | 74.4 | 55.8 | 29.9 | 63.7 | 81.5 | 45.8 | 69.4 |
| Gemma-2-9B | 4.4·10²³ | 67.8 | 89.5 | 87.3 | 78.8 | 70.6 | 63 | 38 | 57.3 | 70.1 | 42 | 81.8 |
| Qwen-2.5-14B | 16.0·10²³ | 72.2 | 94 | 94 | 80 | 79.3 | 51.5 | 37.3 | 71 | 83.4 | 52.8 | 79.1 |
| *Partially open models:* |
| StableLM-2-12B | 2.9·10²³ | 62.2 | 81.9 | 84.5 | 77.7 | 62.4 | 55.5 | 37.6 | 50.9 | 62 | 29.3 | 79.9 |
| Zamba-2-7B | n/c | 65.2 | 92.2 | 89.4 | 79.6 | 68.5 | 51.7 | 36.5 | 55.5 | 67.2 | 32.8 | 78.8 |
| *Fully open models:* |
| Amber-7B | 0.5·10²³ | 35.2 | 44.9 | 74.5 | 65.5 | 24.7 | 26.1 | 18.7 | 21.8 | 4.8 | 11.7 | 59.3 |
| OLMo-7B | 1.0·10²³ | 38.3 | 46.4 | 78.1 | 68.5 | 28.3 | 27.3 | 24.8 | 23.7 | 9.2 | 12.1 | 64.1 |
| MAP-Neo-7B | 2.1·10²³ | 49.6 | 78.4 | 72.8 | 69.2 | 58 | 39.4 | 28.9 | 45.8 | 12.5 | 25.9 | 65.1 |
| OLMo-0424-7B | 0.9·10²³ | 50.7 | 66.9 | 80.1 | 73.6 | 54.3 | 50 | 29.6 | 43.9 | 27.7 | 22.1 | 58.8 |
| DCLM-7B | 1.0·10²³ | 56.9 | 79.8 | 82.3 | 77.3 | 64.4 | 39.3 | 28.8 | 47.5 | 46.1 | 31.3 | 72.1 |
| **OLMo-2-1124-7B** | 1.8·10²³ | 62.9 | 79.8 | 83.8 | 77.2 | 63.7 | 60.8 | 36.9 | 50.4 | 67.5 | 31 | 78 |
| **OLMo-2-1124-13B** | 4.6·10²³ | 68.3 | 83.5 | 86.4 | 81.5 | 67.5 | 70.7 | 46.7 | 54.2 | 75.1 | 35.1 | 81.9 |

## Model Details

### Pretraining
|  | **OLMo 2 7B** | **OLMo 2 13B** |
|-------------------|------------|------------|
| Pretraining Stage 1<br>([OLMo-Mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124)) | 4 trillion tokens<br>(1 epoch) | 5 trillion tokens<br>(1.2 epochs) |
| Pretraining Stage 2<br>([Dolmino-Mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124)) | 50B tokens (3 runs)<br>*merged* | 100B tokens (3 runs)<br>300B tokens (1 run)<br>*merged* |
| Post-training<br>([Tulu 3 SFT OLMo mix](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-mixture)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-7b-preference-mix)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix)) |

#### Stage 1: Initial Pretraining
- Dataset: [OLMo-Mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124) (3.9T tokens)
- Coverage: 90%+ of total pretraining budget
- 7B Model: ~1 epoch
- 13B Model: 1.2 epochs (5T tokens)

#### Stage 2: Fine-tuning
- Dataset: [Dolmino-Mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124) (843B tokens)
- Three training mixes:
  - 50B tokens
  - 100B tokens
  - 300B tokens
- Mix composition: 50% high-quality data + academic/Q&A/instruction/math content

#### Model Merging
- 7B Model: 3 versions trained on 50B mix, merged via model souping
- 13B Model: 3 versions on 100B mix + 1 version on 300B mix, merged for final checkpoint


## Bias, Risks, and Limitations
Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.


## Citation
A technical manuscript is forthcoming!

## Model Card Contact
For errors in this model card, contact `olmo@allenai.org`.