|
--- |
|
language: |
|
- zh |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
base_model: openai/whisper-small |
|
model-index: |
|
- name: Whisper Small zh-HK - Alvin |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 zh-HK |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: zh-HK |
|
split: test |
|
args: zh-HK |
|
metrics: |
|
- type: cer |
|
value: 10.11 |
|
name: Normalized CER |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small zh-HK - Alvin |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. This version has a lower CER (by 1%) compared to the previous one. |
|
|
|
## Training and evaluation data |
|
For training, three datasets were used: |
|
- Common Voice 11 Canto Train Set |
|
- CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906. |
|
- Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf |
|
|
|
## Using the Model |
|
``` |
|
import librosa |
|
|
|
import torch |
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor |
|
|
|
y, sr = librosa.load('audio.mp3', sr=16000) |
|
|
|
MODEL_NAME = "alvanlii/whisper-small-cantonese" |
|
|
|
processor = WhisperProcessor.from_pretrained(MODEL_NAME) |
|
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME) |
|
|
|
model.config.forced_decoder_ids = None |
|
model.config.suppress_tokens = [] |
|
model.config.use_cache = False |
|
|
|
processed_in = processor(y, sampling_rate=sr, return_tensors="pt") |
|
gout = model.generate( |
|
input_features=processed_in.input_features, |
|
output_scores=True, return_dict_in_generate=True |
|
) |
|
transcription = processor.batch_decode(gout.sequences, skip_special_tokens=True)[0] |
|
print(transcription) |
|
``` |
|
- Alternatively, you can use huggingface pipelines |
|
``` |
|
from transformers import pipeline |
|
MODEL_NAME = "alvanlii/whisper-small-cantonese" |
|
lang = "zh" |
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") |
|
text = pipe(file)["text"] |
|
``` |
|
## Training Hyperparameters |
|
- learning_rate: 5e-5 |
|
- train_batch_size: 25 (on 2 GPUs) |
|
- eval_batch_size: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 25x2x2=100 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 14000 |
|
- mixed_precision_training: Native AMP |
|
- augmentation: SpecAugment |
|
|
|
## Training Results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Normalized CER | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.4610 | 0.55 | 2000 | 0.3106 | 13.08 | |
|
| 0.3441 | 1.11 | 4000 | 0.2875 | 11.79 | |
|
| 0.3466 | 1.66 | 6000 | 0.2820 | 11.44 | |
|
| 0.2539 | 2.22 | 8000 | 0.2777 | 10.59 | |
|
| 0.2312 | 2.77 | 10000 | 0.2822 | 10.60 | |
|
| 0.1639 | 3.32 | 12000 | 0.2859 | 10.17 | |
|
| 0.1569 | 3.88 | 14000 | 0.2866 | 10.11 | |
|
|