autoevaluator
HF staff
Add evaluation results on the conll2003 config and test split of conll2003
94e3d16
metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-cased
model-index:
- name: distilbert-base-cased-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- type: precision
value: 0.932077342588002
name: Precision
- type: recall
value: 0.9491753618310333
name: Recall
- type: f1
value: 0.940548653381139
name: F1
- type: accuracy
value: 0.984782480720551
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.8975276153858275
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjA4OTdkZGZhOGVjNzUxMTExZTIxOTBhN2ExYmU0ZGE3MmFmZGYwZjhhMzExYjgwYjljMTg1YzJkMjk2NzVmYyIsInZlcnNpb24iOjF9.4QqmAwmUTNJlRnQiukdI23SNjKa6ZC9K6GBuuVuELeUueYI5R1tP58WYtNglr9BHWqhj1NuqeRNJSa7VFP0dDg
- type: precision
value: 0.9258126323573902
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2ZmZTAwZTBmZGNkODM2NTk3NjkyMTZmOGVhOGM0MDY1YzVlMTdkYjkwMTU3YzI4ODNhZDMyMTM5N2M4YjhjNCIsInZlcnNpb24iOjF9.ybM6lA3dtYn6sFT70ocFeAxLGoMUcXedGx2YeVz58VQt0g2WqhCsHm6MOeTH1W33zgaYF7thcEoT6zOEr8PzBw
- type: recall
value: 0.9132871306827602
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjM0ZTY5NTQzYWI2ZGQzOWU1YjQ1MjhjYjVjNzllYzE5MjE3MTI2ODY2NzQzOWIwMjJiODIxNTJiYWI3MDg0YyIsInZlcnNpb24iOjF9.8nEFuGWTjzFButONIeft0c9pSrdxkNTNxwlyr76tqu3B9VSRdSCswauC2d5ccTXqrNBljmMa8CixqwlVwEj2CQ
- type: auc
value: NaN
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMwY2Q2MGY4ODM2NTdlYjQ0OTI3ZmYyYjYyYTk3ZmNjMTRmYTZjYWFjOTg2NGI2NGZkNGQxZmRiNGU0N2VhYyIsInZlcnNpb24iOjF9.15J6CBL2SyWfraaDRfA80qptuANH89eQzrpnYKoNLyysmblllMwJxJWzQdMEHRveLOXgpNYjdurAZSFy7p0KCA
- type: f1
value: 0.9195072279905185
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZmMTgwZDc2M2ZhMWE5MjMxZDVmOWViNjI3MTM0MTJjMWE5ZTU1NDJhNjRmMTE1NmVlZGY1NmVkODBlNGZiYSIsInZlcnNpb24iOjF9.OoKpemZwjZKioOj4fTNAnJHHBBdOlTHyNIEKWTLfuHcIiqJwYZ_VQ9LyEGPrN9YsgDkM-NiIWaEKkdi4Ww15Dw
- type: loss
value: 0.8574212193489075
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGVhYzFhMzEzOWM4NDJmN2QwZjRmMjYxNjY1MjczNzEzZTZhYzY1YzhjMzg1MjdjODgyNjE2YTRhMzcyMzhiMiIsInZlcnNpb24iOjF9.jfXLq-DE6HVYMC43QoxmTFKmCS7uSKxJYr0lJMu8Z7dKOfv9P4Py1cJG1GWcsdlGjlfVPvGq3pZ1Ofu8uao5BA
distilbert-base-cased-ner
This model is a fine-tuned version of distilbert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1088
- Precision: 0.9321
- Recall: 0.9492
- F1: 0.9405
- Accuracy: 0.9848
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2147483647
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1015 | 1.0 | 1756 | 0.1001 | 0.8858 | 0.9167 | 0.9010 | 0.9740 |
0.049 | 2.0 | 3512 | 0.0803 | 0.8993 | 0.9273 | 0.9131 | 0.9798 |
0.0327 | 3.0 | 5268 | 0.0794 | 0.9199 | 0.9350 | 0.9274 | 0.9821 |
0.0237 | 4.0 | 7024 | 0.0880 | 0.9050 | 0.9344 | 0.9194 | 0.9813 |
0.0131 | 5.0 | 8780 | 0.0849 | 0.9178 | 0.9446 | 0.9310 | 0.9837 |
0.0073 | 6.0 | 10536 | 0.0975 | 0.9166 | 0.9446 | 0.9304 | 0.9838 |
0.0044 | 7.0 | 12292 | 0.0965 | 0.9267 | 0.9475 | 0.9370 | 0.9842 |
0.0015 | 8.0 | 14048 | 0.1075 | 0.9273 | 0.9463 | 0.9367 | 0.9843 |
0.0011 | 9.0 | 15804 | 0.1089 | 0.9317 | 0.9480 | 0.9398 | 0.9847 |
0.0006 | 10.0 | 17560 | 0.1088 | 0.9321 | 0.9492 | 0.9405 | 0.9848 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3