File size: 13,673 Bytes
51a37a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d8c52
51a37a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a344879
51a37a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02fc19
51a37a6
 
 
c386892
51a37a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c386892
 
 
 
51a37a6
 
 
 
 
 
 
 
 
 
c8eff26
a344879
c8eff26
 
1ce0391
c8eff26
 
 
1ce0391
 
c8eff26
1ce0391
c8eff26
 
 
 
 
 
 
1ce0391
c8eff26
 
 
1ce0391
c8eff26
 
 
 
 
 
 
 
 
1ce0391
b0a61c5
c8eff26
 
 
1ce0391
c8eff26
b0a61c5
1ce0391
c8eff26
 
 
 
 
 
1ce0391
 
c8eff26
1ce0391
 
b0a61c5
c8eff26
1ce0391
c8eff26
 
 
1ce0391
 
c8eff26
1ce0391
 
c8eff26
 
 
1ce0391
c8eff26
 
 
1ce0391
c8eff26
 
1ce0391
c8eff26
 
 
 
a344879
cdfccc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from typing import Optional, Tuple, Union

import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from .configuration_aimv2 import AIMv2Config
from torch import nn
from torch.nn import functional as F
from transformers.modeling_outputs import (
    BaseModelOutputWithNoAttention,
    ImageClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel

__all__ = ["AIMv2Model"]


def _get_1d_sincos_pos_embed_from_grid(
    embed_dim: int, pos: torch.Tensor
) -> torch.Tensor:
    omega = torch.arange(embed_dim // 2).float()
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D / 2,)
    pos = pos.reshape(-1)  # (M,)
    out = pos[:, None] * omega[None, :]  # (M, D / 2), outer product
    emb_sin, emb_cos = torch.sin(out), torch.cos(out)  # (M, D / 2)
    emb = torch.concatenate([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb


def get_sincos_pos_embed(h: int, w: int, embed_dim: int) -> torch.Tensor:
    assert embed_dim % 2 == 0, embed_dim
    grid_h = torch.arange(h).float()
    grid_w = torch.arange(w).float()
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
    grid = torch.stack(grid, dim=0)
    grid = grid.reshape([2, 1, h, w])
    emb_h = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
    emb_w = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
    pos_embed = torch.concatenate([emb_h, emb_w], dim=1)  # (H * W, D)
    return pos_embed


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(dim))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self) -> str:
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

    def _norm(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)


class AIMv2SwiGLUFFN(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        hidden_features = config.intermediate_size
        in_features = config.hidden_size
        bias = config.use_bias

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
        self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.fc1(x)) * self.fc3(x)
        x = self.fc2(x)
        return x


class AIMv2PatchEmbed(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.proj = nn.Conv2d(
            config.num_channels,
            config.hidden_size,
            kernel_size=(config.patch_size, config.patch_size),
            stride=(config.patch_size, config.patch_size),
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x


class AIMv2ViTPreprocessor(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.patch_h = config.patch_size
        self.patch_w = config.patch_size
        self.embed_dim = config.hidden_size

        self.patchifier = AIMv2PatchEmbed(config)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        _, _, H, W = x.shape
        tokens = self.patchifier(x)
        pos_embed = get_sincos_pos_embed(
            H // self.patch_h, W // self.patch_w, embed_dim=self.embed_dim
        ).to(tokens.device)
        tokens = tokens + pos_embed
        return tokens


class AIMv2Attention(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        dim = config.hidden_size

        self.num_heads = config.num_attention_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
        self.attn_drop = nn.Dropout(config.attention_dropout)
        self.proj = nn.Linear(dim, dim, bias=config.use_bias)
        self.proj_drop = nn.Dropout(config.projection_dropout)

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)

        x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
        x = x.transpose(1, 2).contiguous().reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class AIMv2Block(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.attn = AIMv2Attention(config)
        self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = AIMv2SwiGLUFFN(config)
        self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        x = x + self.attn(self.norm_1(x), mask)
        x = x + self.mlp(self.norm_2(x))
        return x


class AIMv2Transformer(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.blocks = nn.ModuleList(
            [AIMv2Block(config) for _ in range(config.num_hidden_layers)]
        )
        self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        tokens: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        output_hidden_states: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
        hidden_states = () if output_hidden_states else None
        for block in self.blocks:
            tokens = block(tokens, mask)
            if output_hidden_states:
                hidden_states += (tokens,)
        tokens = self.post_trunk_norm(tokens)
        return tokens, hidden_states


class AIMv2PretrainedModel(PreTrainedModel):
    config_class = AIMv2Config
    base_model_prefix = "aimv2"
    main_input_name = "pixel_values"
    _supports_sdpa = True


class AIMv2Model(AIMv2PretrainedModel):
    def __init__(self, config: AIMv2Config):
        super().__init__(config)
        self.preprocessor = AIMv2ViTPreprocessor(config)
        self.trunk = AIMv2Transformer(config)

    def forward(
        self,
        pixel_values: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[
        Tuple[torch.Tensor],
        Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
        BaseModelOutputWithNoAttention,
    ]:
        if output_hidden_states is None:
            output_hidden_states = self.config.output_hidden_states
        if return_dict is None:
            return_dict = self.config.use_return_dict

        x = self.preprocessor(pixel_values)
        x, hidden_states = self.trunk(
            x, mask, output_hidden_states=output_hidden_states
        )

        if not return_dict:
            res = (x,)
            res += (hidden_states,) if output_hidden_states else ()
            return res

        return BaseModelOutputWithNoAttention(
            last_hidden_state=x,
            hidden_states=hidden_states,
        )


class AIMv2ForImageClassification(AIMv2PretrainedModel):
    def __init__(self, config: AIMv2Config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.aimv2 = AIMv2Model(config)

        # Classifier head
        self.classifier = (
            nn.Linear(config.hidden_size, config.num_labels)
            if config.num_labels > 0
            else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.aimv2(
            pixel_values,
            mask=head_mask,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output[:, 0, :])
        print("LOGITS: ", logits)

        loss = None
        if labels is not None:
            print("LABELS: ", labels)
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        
        print("PROBLEM", self.config.problem_type)
        print("LOSS: ", loss)
        
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            # attentions=outputs.attentions,
        )

'''
class AIMv2ForImageClassification(AIMv2PretrainedModel):
    def __init__(self, config: AIMv2Config):
        print("Initializing AIMv2ForImageClassification")
        super().__init__(config)

        self.num_labels = config.num_labels
        print(f"Number of labels: {self.num_labels}")
        
        self.aimv2 = AIMv2Model(config)
        print("Initialized AIMv2 base model")

        # Classifier head
        self.classifier = (
            nn.Linear(config.hidden_size, config.num_labels)
            if config.num_labels > 0
            else nn.Identity()
        )
        print(f"Initialized classifier: {self.classifier}")

        # Initialize weights and apply final processing
        self.post_init()
        print("Weights initialized and final processing applied")

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        print("Forward pass started")
        
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        print(f"return_dict: {return_dict}")

        # Call base model
        print("Calling AIMv2 base model")
        outputs = self.aimv2(
            pixel_values,
            mask=head_mask,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        print(f"AIMv2 outputs received: {outputs}")
        
        sequence_output = outputs[0]
        print(f"Shape of sequence_output: {sequence_output.shape}")

        # Classifier head
        logits = self.classifier(sequence_output[:, 0, :])
        print(f"Logits calculated: {logits.shape}")

        loss = None
        if labels is not None:
            print(labels)
            print(f"Labels provided: {labels.shape}")
            labels = labels.to(logits.device)
            print(f"Labels moved to device: {labels.device}")
            
            # Always use cross-entropy loss
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            print(f"Loss calculated: {loss.item()}")

        if not return_dict:
            output = (logits,) + outputs[1:]
            print("Output without return_dict")
            return ((loss,) + output) if loss is not None else output

        print("Returning ImageClassifierOutput")
        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )'''