File size: 13,673 Bytes
51a37a6 29d8c52 51a37a6 a344879 51a37a6 a02fc19 51a37a6 c386892 51a37a6 c386892 51a37a6 c8eff26 a344879 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 b0a61c5 c8eff26 1ce0391 c8eff26 b0a61c5 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 b0a61c5 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 1ce0391 c8eff26 a344879 cdfccc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
from typing import Optional, Tuple, Union
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from .configuration_aimv2 import AIMv2Config
from torch import nn
from torch.nn import functional as F
from transformers.modeling_outputs import (
BaseModelOutputWithNoAttention,
ImageClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
__all__ = ["AIMv2Model"]
def _get_1d_sincos_pos_embed_from_grid(
embed_dim: int, pos: torch.Tensor
) -> torch.Tensor:
omega = torch.arange(embed_dim // 2).float()
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D / 2,)
pos = pos.reshape(-1) # (M,)
out = pos[:, None] * omega[None, :] # (M, D / 2), outer product
emb_sin, emb_cos = torch.sin(out), torch.cos(out) # (M, D / 2)
emb = torch.concatenate([emb_sin, emb_cos], dim=1) # (M, D)
return emb
def get_sincos_pos_embed(h: int, w: int, embed_dim: int) -> torch.Tensor:
assert embed_dim % 2 == 0, embed_dim
grid_h = torch.arange(h).float()
grid_w = torch.arange(w).float()
grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
grid = torch.stack(grid, dim=0)
grid = grid.reshape([2, 1, h, w])
emb_h = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
pos_embed = torch.concatenate([emb_h, emb_w], dim=1) # (H * W, D)
return pos_embed
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self) -> str:
return f"{tuple(self.weight.shape)}, eps={self.eps}"
def _norm(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
class AIMv2SwiGLUFFN(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
hidden_features = config.intermediate_size
in_features = config.hidden_size
bias = config.use_bias
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.fc1(x)) * self.fc3(x)
x = self.fc2(x)
return x
class AIMv2PatchEmbed(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.proj = nn.Conv2d(
config.num_channels,
config.hidden_size,
kernel_size=(config.patch_size, config.patch_size),
stride=(config.patch_size, config.patch_size),
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
return x
class AIMv2ViTPreprocessor(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.patch_h = config.patch_size
self.patch_w = config.patch_size
self.embed_dim = config.hidden_size
self.patchifier = AIMv2PatchEmbed(config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
_, _, H, W = x.shape
tokens = self.patchifier(x)
pos_embed = get_sincos_pos_embed(
H // self.patch_h, W // self.patch_w, embed_dim=self.embed_dim
).to(tokens.device)
tokens = tokens + pos_embed
return tokens
class AIMv2Attention(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_dropout)
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
self.proj_drop = nn.Dropout(config.projection_dropout)
def forward(
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
x = x.transpose(1, 2).contiguous().reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AIMv2Block(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.attn = AIMv2Attention(config)
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = AIMv2SwiGLUFFN(config)
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
x = x + self.attn(self.norm_1(x), mask)
x = x + self.mlp(self.norm_2(x))
return x
class AIMv2Transformer(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.blocks = nn.ModuleList(
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
)
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
tokens: torch.Tensor,
mask: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
hidden_states = () if output_hidden_states else None
for block in self.blocks:
tokens = block(tokens, mask)
if output_hidden_states:
hidden_states += (tokens,)
tokens = self.post_trunk_norm(tokens)
return tokens, hidden_states
class AIMv2PretrainedModel(PreTrainedModel):
config_class = AIMv2Config
base_model_prefix = "aimv2"
main_input_name = "pixel_values"
_supports_sdpa = True
class AIMv2Model(AIMv2PretrainedModel):
def __init__(self, config: AIMv2Config):
super().__init__(config)
self.preprocessor = AIMv2ViTPreprocessor(config)
self.trunk = AIMv2Transformer(config)
def forward(
self,
pixel_values: torch.Tensor,
mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
if output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
if return_dict is None:
return_dict = self.config.use_return_dict
x = self.preprocessor(pixel_values)
x, hidden_states = self.trunk(
x, mask, output_hidden_states=output_hidden_states
)
if not return_dict:
res = (x,)
res += (hidden_states,) if output_hidden_states else ()
return res
return BaseModelOutputWithNoAttention(
last_hidden_state=x,
hidden_states=hidden_states,
)
class AIMv2ForImageClassification(AIMv2PretrainedModel):
def __init__(self, config: AIMv2Config):
super().__init__(config)
self.num_labels = config.num_labels
self.aimv2 = AIMv2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size, config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.aimv2(
pixel_values,
mask=head_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output[:, 0, :])
print("LOGITS: ", logits)
loss = None
if labels is not None:
print("LABELS: ", labels)
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
print("PROBLEM", self.config.problem_type)
print("LOSS: ", loss)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
# attentions=outputs.attentions,
)
'''
class AIMv2ForImageClassification(AIMv2PretrainedModel):
def __init__(self, config: AIMv2Config):
print("Initializing AIMv2ForImageClassification")
super().__init__(config)
self.num_labels = config.num_labels
print(f"Number of labels: {self.num_labels}")
self.aimv2 = AIMv2Model(config)
print("Initialized AIMv2 base model")
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size, config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
print(f"Initialized classifier: {self.classifier}")
# Initialize weights and apply final processing
self.post_init()
print("Weights initialized and final processing applied")
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
print("Forward pass started")
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
print(f"return_dict: {return_dict}")
# Call base model
print("Calling AIMv2 base model")
outputs = self.aimv2(
pixel_values,
mask=head_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
print(f"AIMv2 outputs received: {outputs}")
sequence_output = outputs[0]
print(f"Shape of sequence_output: {sequence_output.shape}")
# Classifier head
logits = self.classifier(sequence_output[:, 0, :])
print(f"Logits calculated: {logits.shape}")
loss = None
if labels is not None:
print(labels)
print(f"Labels provided: {labels.shape}")
labels = labels.to(logits.device)
print(f"Labels moved to device: {labels.device}")
# Always use cross-entropy loss
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
print(f"Loss calculated: {loss.item()}")
if not return_dict:
output = (logits,) + outputs[1:]
print("Output without return_dict")
return ((loss,) + output) if loss is not None else output
print("Returning ImageClassifierOutput")
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)'''
|