anaasanin's picture
update model card README.md
079bb83
|
raw
history blame
5.67 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - wildreceipt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-wildreceipt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wildreceipt
          type: wildreceipt
          config: WildReceipt
          split: train
          args: WildReceipt
        metrics:
          - name: Precision
            type: precision
            value: 0.874880087707277
          - name: Recall
            type: recall
            value: 0.878491812302188
          - name: F1
            type: f1
            value: 0.8766822301565504
          - name: Accuracy
            type: accuracy
            value: 0.9253043764396183

layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3111
  • Precision: 0.8749
  • Recall: 0.8785
  • F1: 0.8767
  • Accuracy: 0.9253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.3060 0.6792 0.3615 0.4718 0.6966
No log 0.63 200 0.8842 0.6524 0.5193 0.5783 0.7737
No log 0.95 300 0.6795 0.7338 0.6772 0.7044 0.8336
No log 1.26 400 0.5604 0.7719 0.7390 0.7551 0.8629
1.0319 1.58 500 0.4862 0.7819 0.7618 0.7717 0.8730
1.0319 1.89 600 0.4365 0.7852 0.7807 0.7829 0.8795
1.0319 2.21 700 0.4182 0.8162 0.8016 0.8088 0.8897
1.0319 2.52 800 0.3886 0.8126 0.8196 0.8161 0.8936
1.0319 2.84 900 0.3637 0.8260 0.8347 0.8303 0.9004
0.4162 3.15 1000 0.3482 0.8532 0.8243 0.8385 0.9062
0.4162 3.47 1100 0.3474 0.8573 0.8248 0.8407 0.9042
0.4162 3.79 1200 0.3325 0.8408 0.8435 0.8421 0.9086
0.4162 4.1 1300 0.3262 0.8468 0.8467 0.8468 0.9095
0.4162 4.42 1400 0.3237 0.8511 0.8442 0.8477 0.9100
0.2764 4.73 1500 0.3156 0.8563 0.8456 0.8509 0.9122
0.2764 5.05 1600 0.3032 0.8558 0.8566 0.8562 0.9153
0.2764 5.36 1700 0.3120 0.8604 0.8457 0.8530 0.9142
0.2764 5.68 1800 0.2976 0.8608 0.8592 0.8600 0.9178
0.2764 5.99 1900 0.3056 0.8551 0.8676 0.8613 0.9171
0.212 6.31 2000 0.3191 0.8528 0.8599 0.8563 0.9147
0.212 6.62 2100 0.3051 0.8653 0.8635 0.8644 0.9186
0.212 6.94 2200 0.3022 0.8681 0.8632 0.8657 0.9208
0.212 7.26 2300 0.3101 0.8605 0.8643 0.8624 0.9178
0.212 7.57 2400 0.3100 0.8553 0.8693 0.8622 0.9163
0.1725 7.89 2500 0.3012 0.8685 0.8723 0.8704 0.9221
0.1725 8.2 2600 0.3135 0.8627 0.8756 0.8691 0.9187
0.1725 8.52 2700 0.3115 0.8768 0.8671 0.8719 0.9229
0.1725 8.83 2800 0.3044 0.8757 0.8708 0.8732 0.9231
0.1725 9.15 2900 0.3042 0.8698 0.8658 0.8678 0.9212
0.142 9.46 3000 0.3095 0.8677 0.8702 0.8690 0.9207
0.142 9.78 3100 0.3119 0.8686 0.8762 0.8724 0.9229
0.142 10.09 3200 0.3078 0.8713 0.8774 0.8743 0.9238
0.142 10.41 3300 0.3123 0.8711 0.8753 0.8732 0.9238
0.142 10.73 3400 0.3098 0.8688 0.8774 0.8731 0.9232
0.1238 11.04 3500 0.3120 0.8737 0.8770 0.8754 0.9247
0.1238 11.36 3600 0.3124 0.8760 0.8768 0.8764 0.9251
0.1238 11.67 3700 0.3101 0.8770 0.8759 0.8764 0.9254
0.1238 11.99 3800 0.3103 0.8767 0.8774 0.8770 0.9255
0.1238 12.3 3900 0.3122 0.8740 0.8788 0.8764 0.9251
0.1096 12.62 4000 0.3111 0.8749 0.8785 0.8767 0.9253

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.13.0