|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
num_nodes = 10000 |
|
hours = 24 |
|
samples_per_hour = 60 |
|
time_steps = hours * samples_per_hour |
|
wave_frequency = 1 / 24 |
|
wave_amplitude = 1.0 |
|
infrared_amplitude = 0.5 |
|
brainwave_frequency = 10 / 3600 |
|
brainwave_amplitude = 0.3 |
|
random_opportunity_scale = 0.8 |
|
encryption_key = 0.5 |
|
|
|
|
|
class WealthSignalVPNModel(nn.Module): |
|
def __init__(self): |
|
super(WealthSignalVPNModel, self).__init__() |
|
self.num_nodes = num_nodes |
|
self.time_steps = time_steps |
|
self.encryption_key = encryption_key |
|
|
|
def forward(self, time_tensor): |
|
|
|
combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32) |
|
|
|
for i in range(self.num_nodes): |
|
|
|
wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes)) |
|
|
|
random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps) |
|
|
|
infrared_signal = infrared_amplitude * torch.ones(self.time_steps) |
|
|
|
brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor) |
|
|
|
combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal |
|
|
|
|
|
overall_signal = torch.mean(combined_signals, dim=0) |
|
|
|
|
|
encrypted_signal = torch.sin(overall_signal * self.encryption_key) |
|
|
|
return encrypted_signal, overall_signal |
|
|
|
|
|
time_tensor = torch.linspace(0, hours, time_steps) |
|
|
|
|
|
vpn_model = WealthSignalVPNModel() |
|
encrypted_signal, original_signal = vpn_model(time_tensor) |
|
|
|
|
|
encrypted_signal_np = encrypted_signal.detach().numpy() |
|
original_signal_np = original_signal.detach().numpy() |
|
|
|
|
|
encrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours)) |
|
original_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours)) |
|
|
|
|
|
fig, axs = plt.subplots(2, 1, figsize=(15, 12)) |
|
|
|
|
|
cax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none') |
|
axs[0].set_title('Original Signal Visualization') |
|
axs[0].set_xlabel('Time (Hours)') |
|
axs[0].set_ylabel('Sample Points Per Hour') |
|
fig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude') |
|
|
|
|
|
cax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none') |
|
axs[1].set_title('Encrypted Signal Visualization') |
|
axs[1].set_xlabel('Time (Hours)') |
|
axs[1].set_ylabel('Sample Points Per Hour') |
|
fig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude') |
|
|
|
plt.tight_layout() |
|
plt.show() |