anvorja's picture
Update README.md
18f957a verified
|
raw
history blame
2.18 kB
metadata
library_name: transformers
base_model: raulgdp/xml-roberta-large-finetuned-ner
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: la-xml-roberta-large-ner-finetuned-biomedical-t4
    results: []

xml-roberta-large-ner-finetuned-biomedical

This model is a fine-tuned version of raulgdp/xml-roberta-large-finetuned-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1139
  • Precision: 0.9234
  • Recall: 0.9548
  • F1: 0.9388
  • Accuracy: 0.9786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1235 1.0 2447 0.0949 0.9076 0.9524 0.9294 0.9738
0.0859 2.0 4894 0.1034 0.9222 0.9597 0.9406 0.9778
0.063 3.0 7341 0.1005 0.9330 0.9600 0.9463 0.9807
0.059 4.0 9788 0.1065 0.9350 0.9577 0.9463 0.9806
0.0513 5.0 12235 0.1139 0.9234 0.9548 0.9388 0.9786

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3