|
--- |
|
library_name: transformers |
|
base_model: raulgdp/xml-roberta-large-finetuned-ner |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: la-xml-roberta-large-ner-finetuned-biomedical-t4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xml-roberta-large-ner-finetuned-biomedical |
|
|
|
This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1139 |
|
- Precision: 0.9234 |
|
- Recall: 0.9548 |
|
- F1: 0.9388 |
|
- Accuracy: 0.9786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1235 | 1.0 | 2447 | 0.0949 | 0.9076 | 0.9524 | 0.9294 | 0.9738 | |
|
| 0.0859 | 2.0 | 4894 | 0.1034 | 0.9222 | 0.9597 | 0.9406 | 0.9778 | |
|
| 0.063 | 3.0 | 7341 | 0.1005 | 0.9330 | 0.9600 | 0.9463 | 0.9807 | |
|
| 0.059 | 4.0 | 9788 | 0.1065 | 0.9350 | 0.9577 | 0.9463 | 0.9806 | |
|
| 0.0513 | 5.0 | 12235 | 0.1139 | 0.9234 | 0.9548 | 0.9388 | 0.9786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|