apv53-fit's picture
End of training
c8f1337 verified
|
raw
history blame
2.08 kB
---
library_name: transformers
license: apache-2.0
base_model: OthmaneJ/distil-wav2vec2
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: apv53-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.81
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# apv53-finetuned-gtzan
This model is a fine-tuned version of [OthmaneJ/distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7992
- Accuracy: 0.81
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4747 | 1.0 | 113 | 0.8103 | 0.77 |
| 0.3728 | 2.0 | 226 | 0.8200 | 0.78 |
| 0.3871 | 3.0 | 339 | 0.8358 | 0.79 |
| 0.2235 | 4.0 | 452 | 0.9072 | 0.76 |
| 0.1195 | 5.0 | 565 | 0.7992 | 0.81 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0