metadata
library_name: transformers
base_model: danasone/bart-small-ru-en
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: bart_hin_eng_mt
results: []
bart_hin_eng_mt
This model is a fine-tuned version of danasone/bart-small-ru-en on cfilt/iitb-english-hindi dataset. It achieves the following results on the evaluation set:
- Loss: 1.9000
- Bleu: 12.0235
- Gen Len: 33.4107
Model description
Machine Translation model from Hindi to English on bart small model.
Inference and evaluation
import torch
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
class BartSmall():
def __init__(self, model_path = 'ar5entum/bart_hin_eng_mt', device = None):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
if not device:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.model.to(device)
def predict(self, input_text):
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True)
prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True)
return prediction
def predict_batch(self, input_texts, batch_size=32):
all_predictions = []
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512,
truncation=True, padding=True).to(self.device)
with torch.no_grad():
pred_ids = self.model.generate(inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True)
predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
all_predictions.extend(predictions)
return all_predictions
model = BartSmall(device='cuda')
input_texts = [
"यह शोध्य रकम है।",
"जानने के लिए देखें ये वीडियो.",
"वह दो बेटियों व एक बेटे का पिता था।"
]
ground_truths = [
"This is a repayable amount.",
"Watch this video to find out.",
"He was a father of two daughters and a son."
]
import time
start = time.time()
predictions = model.predict_batch(input_texts, batch_size=len(input_texts))
end = time.time()
print("TIME: ", end-start)
for i in range(len(input_texts)):
print("‾‾‾‾‾‾‾‾‾‾‾‾")
print("Input text:\t", input_texts[i])
print("Prediction:\t", predictions[i])
print("Ground Truth:\t", ground_truths[i])
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=ground_truths)
print(results)
# TIME: 1.2374696731567383
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: यह शोध्य रकम है।
# Prediction: This is a repayable amount.
# Ground Truth: This is a repayable amount.
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: जानने के लिए देखें ये वीडियो.
# Prediction: View these videos to know.
# Ground Truth: Watch this video to find out.
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: वह दो बेटियों व एक बेटे का पिता था।
# Prediction: He was a father of two daughters and a son.
# Ground Truth: He was a father of two daughters and a son.
# {'bleu': 0.747875245486914, 'precisions': [0.8260869565217391, 0.75, 0.7647058823529411, 0.7857142857142857], 'brevity_penalty': 0.9574533680683809, 'length_ratio': 0.9583333333333334, 'translation_length': 23, 'reference_length': 24}
Training Procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 100
- eval_batch_size: 40
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 200
- total_eval_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
2.6298 | 1.0 | 8265 | 2.6192 | 4.5435 | 39.8786 |
2.2656 | 2.0 | 16530 | 2.2836 | 8.2498 | 35.8339 |
2.0625 | 3.0 | 24795 | 2.1747 | 9.9182 | 35.5214 |
1.974 | 4.0 | 33060 | 2.0760 | 10.1515 | 33.9732 |
1.925 | 5.0 | 41325 | 2.0285 | 10.7702 | 34.175 |
1.8076 | 6.0 | 49590 | 1.9860 | 11.4286 | 34.8875 |
1.7817 | 7.0 | 57855 | 1.9664 | 11.4579 | 32.6411 |
1.7025 | 8.0 | 66120 | 1.9561 | 11.9226 | 33.5179 |
1.6691 | 9.0 | 74385 | 1.9354 | 11.7352 | 33.2161 |
1.6631 | 10.0 | 82650 | 1.9231 | 11.9303 | 32.7679 |
1.6317 | 11.0 | 90915 | 1.9264 | 11.5889 | 32.625 |
1.6449 | 12.0 | 99180 | 1.9047 | 11.8451 | 33.8554 |
1.6165 | 13.0 | 107445 | 1.9040 | 12.0755 | 32.7661 |
1.5826 | 14.0 | 115710 | 1.9000 | 12.3137 | 33.3536 |
1.5835 | 15.0 | 123975 | 1.9000 | 12.0235 | 33.4107 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1