|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- autextification2023 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ia-detection-roberta-base |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: autextification2023 |
|
type: autextification2023 |
|
config: detection_en |
|
split: train |
|
args: detection_en |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.512550384756321 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6777299981830295 |
|
- name: Precision |
|
type: precision |
|
value: 0.512550384756321 |
|
- name: Recall |
|
type: recall |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ia-detection-roberta-base |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the autextification2023 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6928 |
|
- Accuracy: 0.5126 |
|
- F1: 0.6777 |
|
- Precision: 0.5126 |
|
- Recall: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.7021 | 1.0 | 3808 | 0.6950 | 0.5052 | 0.0 | 0.0 | 0.0 | |
|
| 0.6936 | 2.0 | 7616 | 0.6937 | 0.4948 | 0.6621 | 0.4948 | 1.0 | |
|
| 0.692 | 3.0 | 11424 | 0.6936 | 0.5052 | 0.0 | 0.0 | 0.0 | |
|
| 0.6988 | 4.0 | 15232 | 0.6952 | 0.4948 | 0.6621 | 0.4948 | 1.0 | |
|
| 0.6951 | 5.0 | 19040 | 0.6931 | 0.5052 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.13.3 |
|
|