metadata
pipeline_tag: sentence-similarity
tags:
- mteb
- sentence-transformers
- feature-extraction
- sentence-similarity
model-index:
- name: acge_text_embedding
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: b44c3b011063adb25877c13823db83bb193913c4
metrics:
- type: cos_sim_pearson
value: 54.03219651150428
- type: cos_sim_spearman
value: 58.80567952355933
- type: euclidean_pearson
value: 57.47052075207808
- type: euclidean_spearman
value: 58.80429232297114
- type: manhattan_pearson
value: 57.46163912433917
- type: manhattan_spearman
value: 58.797778532121
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
metrics:
- type: cos_sim_pearson
value: 53.523171963746854
- type: cos_sim_spearman
value: 57.94610819724817
- type: euclidean_pearson
value: 61.16974418403869
- type: euclidean_spearman
value: 57.94681861980281
- type: manhattan_pearson
value: 61.167825359334515
- type: manhattan_spearman
value: 57.94540903298445
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.556
- type: f1
value: 46.61852566163211
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
metrics:
- type: cos_sim_pearson
value: 68.26963267181252
- type: cos_sim_spearman
value: 70.36696156869363
- type: euclidean_pearson
value: 69.42591718370763
- type: euclidean_spearman
value: 70.3677583116469
- type: manhattan_pearson
value: 69.40127857737215
- type: manhattan_spearman
value: 70.34572662526428
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
metrics:
- type: v_measure
value: 46.54685387179774
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
metrics:
- type: v_measure
value: 44.45602575811581
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
metrics:
- type: map
value: 88.4576468720639
- type: mrr
value: 90.90595238095237
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
metrics:
- type: map
value: 88.71413673867269
- type: mrr
value: 91.19265873015873
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: map_at_1
value: 26.825
- type: map_at_10
value: 39.959
- type: map_at_100
value: 41.861
- type: map_at_1000
value: 41.963
- type: map_at_3
value: 35.357
- type: map_at_5
value: 38.001000000000005
- type: mrr_at_1
value: 40.585
- type: mrr_at_10
value: 48.802
- type: mrr_at_100
value: 49.779
- type: mrr_at_1000
value: 49.819
- type: mrr_at_3
value: 46.095000000000006
- type: mrr_at_5
value: 47.678
- type: ndcg_at_1
value: 40.585
- type: ndcg_at_10
value: 46.758
- type: ndcg_at_100
value: 53.957
- type: ndcg_at_1000
value: 55.656000000000006
- type: ndcg_at_3
value: 40.961
- type: ndcg_at_5
value: 43.564
- type: precision_at_1
value: 40.585
- type: precision_at_10
value: 10.424999999999999
- type: precision_at_100
value: 1.625
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 23.114
- type: precision_at_5
value: 17.024
- type: recall_at_1
value: 26.825
- type: recall_at_10
value: 57.909
- type: recall_at_100
value: 87.375
- type: recall_at_1000
value: 98.695
- type: recall_at_3
value: 40.754000000000005
- type: recall_at_5
value: 48.472
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
metrics:
- type: cos_sim_accuracy
value: 83.4155141310884
- type: cos_sim_ap
value: 90.49006000181046
- type: cos_sim_f1
value: 84.28797826579125
- type: cos_sim_precision
value: 81.69848584595128
- type: cos_sim_recall
value: 87.04699555763385
- type: dot_accuracy
value: 83.40348767288035
- type: dot_ap
value: 90.50667776818787
- type: dot_f1
value: 84.31853669417802
- type: dot_precision
value: 80.61420345489442
- type: dot_recall
value: 88.379705400982
- type: euclidean_accuracy
value: 83.43956704750451
- type: euclidean_ap
value: 90.48869698176196
- type: euclidean_f1
value: 84.32616081540203
- type: euclidean_precision
value: 81.77026136613222
- type: euclidean_recall
value: 87.04699555763385
- type: manhattan_accuracy
value: 83.55983162958509
- type: manhattan_ap
value: 90.47972486190912
- type: manhattan_f1
value: 84.42325158946412
- type: manhattan_precision
value: 82.0569410726109
- type: manhattan_recall
value: 86.93009118541033
- type: max_accuracy
value: 83.55983162958509
- type: max_ap
value: 90.50667776818787
- type: max_f1
value: 84.42325158946412
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: map_at_1
value: 67.597
- type: map_at_10
value: 76.545
- type: map_at_100
value: 76.893
- type: map_at_1000
value: 76.897
- type: map_at_3
value: 74.807
- type: map_at_5
value: 75.895
- type: mrr_at_1
value: 67.861
- type: mrr_at_10
value: 76.545
- type: mrr_at_100
value: 76.893
- type: mrr_at_1000
value: 76.897
- type: mrr_at_3
value: 74.886
- type: mrr_at_5
value: 75.934
- type: ndcg_at_1
value: 67.861
- type: ndcg_at_10
value: 80.417
- type: ndcg_at_100
value: 81.928
- type: ndcg_at_1000
value: 82.038
- type: ndcg_at_3
value: 77.025
- type: ndcg_at_5
value: 78.94099999999999
- type: precision_at_1
value: 67.861
- type: precision_at_10
value: 9.336
- type: precision_at_100
value: 1.001
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 27.959
- type: precision_at_5
value: 17.745
- type: recall_at_1
value: 67.597
- type: recall_at_10
value: 92.308
- type: recall_at_100
value: 99.05199999999999
- type: recall_at_1000
value: 99.895
- type: recall_at_3
value: 83.325
- type: recall_at_5
value: 87.908
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: map_at_1
value: 25.574
- type: map_at_10
value: 78.493
- type: map_at_100
value: 81.384
- type: map_at_1000
value: 81.429
- type: map_at_3
value: 54.107000000000006
- type: map_at_5
value: 68.755
- type: mrr_at_1
value: 89.2
- type: mrr_at_10
value: 92.567
- type: mrr_at_100
value: 92.642
- type: mrr_at_1000
value: 92.646
- type: mrr_at_3
value: 92.258
- type: mrr_at_5
value: 92.458
- type: ndcg_at_1
value: 89.2
- type: ndcg_at_10
value: 86.084
- type: ndcg_at_100
value: 89.053
- type: ndcg_at_1000
value: 89.484
- type: ndcg_at_3
value: 84.898
- type: ndcg_at_5
value: 84.078
- type: precision_at_1
value: 89.2
- type: precision_at_10
value: 41.345
- type: precision_at_100
value: 4.779
- type: precision_at_1000
value: 0.488
- type: precision_at_3
value: 76.167
- type: precision_at_5
value: 64.7
- type: recall_at_1
value: 25.574
- type: recall_at_10
value: 87.153
- type: recall_at_100
value: 96.829
- type: recall_at_1000
value: 99.11999999999999
- type: recall_at_3
value: 56.421
- type: recall_at_5
value: 73.7
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: map_at_1
value: 52
- type: map_at_10
value: 62.553000000000004
- type: map_at_100
value: 63.048
- type: map_at_1000
value: 63.065000000000005
- type: map_at_3
value: 60.233000000000004
- type: map_at_5
value: 61.712999999999994
- type: mrr_at_1
value: 52
- type: mrr_at_10
value: 62.553000000000004
- type: mrr_at_100
value: 63.048
- type: mrr_at_1000
value: 63.065000000000005
- type: mrr_at_3
value: 60.233000000000004
- type: mrr_at_5
value: 61.712999999999994
- type: ndcg_at_1
value: 52
- type: ndcg_at_10
value: 67.51599999999999
- type: ndcg_at_100
value: 69.896
- type: ndcg_at_1000
value: 70.281
- type: ndcg_at_3
value: 62.82600000000001
- type: ndcg_at_5
value: 65.498
- type: precision_at_1
value: 52
- type: precision_at_10
value: 8.3
- type: precision_at_100
value: 0.941
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 23.433
- type: precision_at_5
value: 15.36
- type: recall_at_1
value: 52
- type: recall_at_10
value: 83
- type: recall_at_100
value: 94.1
- type: recall_at_1000
value: 97
- type: recall_at_3
value: 70.3
- type: recall_at_5
value: 76.8
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
metrics:
- type: accuracy
value: 51.76606387071951
- type: f1
value: 40.25725744367441
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
metrics:
- type: accuracy
value: 86.69793621013133
- type: ap
value: 55.46718958939327
- type: f1
value: 81.48228915952436
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
metrics:
- type: cos_sim_pearson
value: 71.13755846688528
- type: cos_sim_spearman
value: 78.17322744116031
- type: euclidean_pearson
value: 77.48740502819294
- type: euclidean_spearman
value: 78.17553979551616
- type: manhattan_pearson
value: 77.47671561749276
- type: manhattan_spearman
value: 78.16780681181362
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
metrics:
- type: map
value: 27.054392822906316
- type: mrr
value: 29.001190476190473
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: map_at_1
value: 65.62599999999999
- type: map_at_10
value: 74.749
- type: map_at_100
value: 75.091
- type: map_at_1000
value: 75.103
- type: map_at_3
value: 73.007
- type: map_at_5
value: 74.124
- type: mrr_at_1
value: 67.894
- type: mrr_at_10
value: 75.374
- type: mrr_at_100
value: 75.67399999999999
- type: mrr_at_1000
value: 75.685
- type: mrr_at_3
value: 73.868
- type: mrr_at_5
value: 74.83
- type: ndcg_at_1
value: 67.894
- type: ndcg_at_10
value: 78.414
- type: ndcg_at_100
value: 79.947
- type: ndcg_at_1000
value: 80.265
- type: ndcg_at_3
value: 75.12
- type: ndcg_at_5
value: 76.999
- type: precision_at_1
value: 67.894
- type: precision_at_10
value: 9.47
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 28.333000000000002
- type: precision_at_5
value: 17.989
- type: recall_at_1
value: 65.62599999999999
- type: recall_at_10
value: 89.063
- type: recall_at_100
value: 95.99499999999999
- type: recall_at_1000
value: 98.455
- type: recall_at_3
value: 80.357
- type: recall_at_5
value: 84.824
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 75.88433086751849
- type: f1
value: 73.06801290283882
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.44317417619366
- type: f1
value: 78.1407925250533
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: map_at_1
value: 54.900000000000006
- type: map_at_10
value: 61
- type: map_at_100
value: 61.549
- type: map_at_1000
value: 61.590999999999994
- type: map_at_3
value: 59.516999999999996
- type: map_at_5
value: 60.267
- type: mrr_at_1
value: 55.1
- type: mrr_at_10
value: 61.1
- type: mrr_at_100
value: 61.649
- type: mrr_at_1000
value: 61.690999999999995
- type: mrr_at_3
value: 59.617
- type: mrr_at_5
value: 60.367000000000004
- type: ndcg_at_1
value: 54.900000000000006
- type: ndcg_at_10
value: 64.07000000000001
- type: ndcg_at_100
value: 66.981
- type: ndcg_at_1000
value: 68.207
- type: ndcg_at_3
value: 60.955999999999996
- type: ndcg_at_5
value: 62.31100000000001
- type: precision_at_1
value: 54.900000000000006
- type: precision_at_10
value: 7.380000000000001
- type: precision_at_100
value: 0.88
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 21.7
- type: precision_at_5
value: 13.68
- type: recall_at_1
value: 54.900000000000006
- type: recall_at_10
value: 73.8
- type: recall_at_100
value: 88
- type: recall_at_1000
value: 97.8
- type: recall_at_3
value: 65.10000000000001
- type: recall_at_5
value: 68.4
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
metrics:
- type: accuracy
value: 77.56333333333333
- type: f1
value: 77.53666660124703
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
metrics:
- type: cos_sim_accuracy
value: 81.10449377368705
- type: cos_sim_ap
value: 85.16141108141811
- type: cos_sim_f1
value: 82.97771455666192
- type: cos_sim_precision
value: 75.30120481927712
- type: cos_sim_recall
value: 92.39704329461456
- type: dot_accuracy
value: 81.05035192203573
- type: dot_ap
value: 85.13568069803823
- type: dot_f1
value: 83.04038004750595
- type: dot_precision
value: 75.47495682210709
- type: dot_recall
value: 92.29144667370645
- type: euclidean_accuracy
value: 81.10449377368705
- type: euclidean_ap
value: 85.16341835376645
- type: euclidean_f1
value: 82.96860133206471
- type: euclidean_precision
value: 75.4978354978355
- type: euclidean_recall
value: 92.08025343189018
- type: manhattan_accuracy
value: 81.15863562533838
- type: manhattan_ap
value: 85.13388548299352
- type: manhattan_f1
value: 82.91048348492102
- type: manhattan_precision
value: 75.83187390542906
- type: manhattan_recall
value: 91.4466737064414
- type: max_accuracy
value: 81.15863562533838
- type: max_ap
value: 85.16341835376645
- type: max_f1
value: 83.04038004750595
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: e610f2ebd179a8fda30ae534c3878750a96db120
metrics:
- type: accuracy
value: 93.75
- type: ap
value: 91.8757063139003
- type: f1
value: 93.73901896028437
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
metrics:
- type: cos_sim_pearson
value: 39.15831534609524
- type: cos_sim_spearman
value: 45.4969633673045
- type: euclidean_pearson
value: 44.848515043386826
- type: euclidean_spearman
value: 45.50184060659851
- type: manhattan_pearson
value: 44.855618769134786
- type: manhattan_spearman
value: 45.521349632021
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
metrics:
- type: cos_sim_pearson
value: 34.240063381471685
- type: cos_sim_spearman
value: 37.29810568951238
- type: euclidean_pearson
value: 35.114630288288694
- type: euclidean_spearman
value: 37.29224953963422
- type: manhattan_pearson
value: 35.07429582481541
- type: manhattan_spearman
value: 37.24006222876743
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 61.839386292911634
- type: cos_sim_spearman
value: 67.05632097771566
- type: euclidean_pearson
value: 65.72031356075829
- type: euclidean_spearman
value: 67.05823973191457
- type: manhattan_pearson
value: 65.66073527177826
- type: manhattan_spearman
value: 67.04221791481658
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
metrics:
- type: cos_sim_pearson
value: 81.56195178204662
- type: cos_sim_spearman
value: 82.73033434099031
- type: euclidean_pearson
value: 82.49605254478311
- type: euclidean_spearman
value: 82.72004995354247
- type: manhattan_pearson
value: 82.48358662476731
- type: manhattan_spearman
value: 82.70676710419983
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
metrics:
- type: map
value: 65.9012655137193
- type: mrr
value: 75.97216177150165
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: map_at_1
value: 27.057
- type: map_at_10
value: 75.29299999999999
- type: map_at_100
value: 79.098
- type: map_at_1000
value: 79.172
- type: map_at_3
value: 53.049
- type: map_at_5
value: 65.103
- type: mrr_at_1
value: 88.822
- type: mrr_at_10
value: 91.721
- type: mrr_at_100
value: 91.814
- type: mrr_at_1000
value: 91.818
- type: mrr_at_3
value: 91.213
- type: mrr_at_5
value: 91.544
- type: ndcg_at_1
value: 88.822
- type: ndcg_at_10
value: 83.269
- type: ndcg_at_100
value: 87.259
- type: ndcg_at_1000
value: 87.938
- type: ndcg_at_3
value: 84.678
- type: ndcg_at_5
value: 83.231
- type: precision_at_1
value: 88.822
- type: precision_at_10
value: 41.297
- type: precision_at_100
value: 4.994
- type: precision_at_1000
value: 0.515
- type: precision_at_3
value: 73.933
- type: precision_at_5
value: 61.885
- type: recall_at_1
value: 27.057
- type: recall_at_10
value: 82.33200000000001
- type: recall_at_100
value: 95.065
- type: recall_at_1000
value: 98.466
- type: recall_at_3
value: 54.872
- type: recall_at_5
value: 68.814
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
metrics:
- type: accuracy
value: 53.690000000000005
- type: f1
value: 51.87306088948137
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
metrics:
- type: v_measure
value: 73.76590442198115
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
metrics:
- type: v_measure
value: 68.61875345658028
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: map_at_1
value: 59.4
- type: map_at_10
value: 69.19
- type: map_at_100
value: 69.711
- type: map_at_1000
value: 69.72699999999999
- type: map_at_3
value: 67.717
- type: map_at_5
value: 68.742
- type: mrr_at_1
value: 59.4
- type: mrr_at_10
value: 69.19
- type: mrr_at_100
value: 69.711
- type: mrr_at_1000
value: 69.72699999999999
- type: mrr_at_3
value: 67.717
- type: mrr_at_5
value: 68.742
- type: ndcg_at_1
value: 59.4
- type: ndcg_at_10
value: 73.28099999999999
- type: ndcg_at_100
value: 75.575
- type: ndcg_at_1000
value: 75.971
- type: ndcg_at_3
value: 70.339
- type: ndcg_at_5
value: 72.16799999999999
- type: precision_at_1
value: 59.4
- type: precision_at_10
value: 8.58
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 25.967000000000002
- type: precision_at_5
value: 16.46
- type: recall_at_1
value: 59.4
- type: recall_at_10
value: 85.8
- type: recall_at_100
value: 96
- type: recall_at_1000
value: 99.1
- type: recall_at_3
value: 77.9
- type: recall_at_5
value: 82.3
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: 339287def212450dcaa9df8c22bf93e9980c7023
metrics:
- type: accuracy
value: 88.56000000000002
- type: ap
value: 73.62152033132061
- type: f1
value: 87.0916916405758
acge model
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了Matryoshka Representation Learning,如图所示:
建议使用的维度为1024或者1792
Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
---|---|---|---|---|---|
acge-text-embedding | 0.65 | [1024, 1792] | 1024 | Chinese | NO |
Metric
C-MTEB leaderboard (Chinese)
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
Reproduce our results
C-MTEB:
import torch
import argparse
import functools
from C_MTEB.tasks import *
from typing import List, Dict
from sentence_transformers import SentenceTransformer
from mteb import MTEB, DRESModel
class RetrievalModel(DRESModel):
def __init__(self, encoder, **kwargs):
self.encoder = encoder
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
input_texts = ['{}'.format(q) for q in queries]
return self._do_encode(input_texts)
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:
input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]
input_texts = ['{}'.format(t) for t in input_texts]
return self._do_encode(input_texts)
@torch.no_grad()
def _do_encode(self, input_texts: List[str]) -> np.ndarray:
return self.encoder.encode(
sentences=input_texts,
batch_size=512,
normalize_embeddings=True,
convert_to_numpy=True
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str)
parser.add_argument('--task_type', default=None, type=str)
parser.add_argument('--pooling_method', default='cls', type=str)
parser.add_argument('--output_dir', default='zh_results',
type=str, help='output directory')
parser.add_argument('--max_len', default=1024, type=int, help='max length')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
encoder = SentenceTransformer(args.model_name_or_path).half()
encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True)
encoder.max_seq_length = int(args.max_len)
task_names = [t.description["name"] for t in MTEB(task_types=args.task_type,
task_langs=['zh', 'zh-CN']).tasks]
TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval",
"EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"]
for task in task_names:
evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])
if task in TASKS_WITH_PROMPTS:
evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False)
else:
evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False)
Usage
acge 中文系列模型
在sentence-transformer库中的使用方法:
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
在sentence-transformer库中的使用方法,选取不同的维度:
import torch
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
embeddings = model.encode(sentences, normalize_embeddings=False)
matryoshka_dim = 1024
embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
print(embeddings.shape)
# => (2, 1024)