sulaimank's picture
End of training
1c1955a verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: lg_ug
          split: test
          args: lg_ug
        metrics:
          - name: Wer
            type: wer
            value: 0.4090379008746356

mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2

This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2933
  • Wer: 0.4090
  • Cer: 0.0749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7083 1.0 7125 0.3181 0.4363 0.0781
0.2153 2.0 14250 0.3057 0.4327 0.0775
0.2092 3.0 21375 0.2982 0.4040 0.0738
0.207 4.0 28500 0.3020 0.4057 0.0740
0.2047 5.0 35625 0.3008 0.4136 0.0790
0.2025 6.0 42750 0.3010 0.4156 0.0763
0.1989 7.0 49875 0.3064 0.4101 0.0754
0.1989 8.0 57000 0.2903 0.4086 0.0751
0.1973 9.0 64125 0.2927 0.4 0.0737
0.1961 10.0 71250 0.2882 0.3986 0.0736
0.1952 11.0 78375 0.2895 0.4068 0.0741
0.1943 12.0 85500 0.2950 0.4096 0.0754
0.1933 13.0 92625 0.2945 0.4086 0.0749
0.1926 14.0 99750 0.2933 0.4004 0.0734
0.1912 15.0 106875 0.2925 0.4180 0.0755
0.1909 16.0 114000 0.2949 0.4149 0.0751
0.1902 17.0 121125 0.2888 0.4045 0.0740
0.189 18.0 128250 0.2856 0.4086 0.0744
0.1885 19.0 135375 0.2933 0.4125 0.0745
0.187 20.0 142500 0.2930 0.4115 0.0746
0.1877 21.0 149625 0.2886 0.4023 0.0737
0.1867 22.0 156750 0.2933 0.4009 0.0730
0.1863 23.0 163875 0.2893 0.4040 0.0738
0.1846 24.0 171000 0.2920 0.4146 0.0753
0.185 25.0 178125 0.2907 0.4017 0.0730
0.1836 26.0 185250 0.2939 0.3992 0.0730
0.1827 27.0 192375 0.2934 0.4144 0.0760
0.1827 28.0 199500 0.2962 0.4038 0.0736
0.1818 29.0 206625 0.2917 0.4063 0.0750
0.1818 30.0 213750 0.2933 0.4090 0.0749

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3