metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: lg_ug
split: test
args: lg_ug
metrics:
- name: Wer
type: wer
value: 0.4090379008746356
mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v2
This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.2933
- Wer: 0.4090
- Cer: 0.0749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 70
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.7083 | 1.0 | 7125 | 0.3181 | 0.4363 | 0.0781 |
0.2153 | 2.0 | 14250 | 0.3057 | 0.4327 | 0.0775 |
0.2092 | 3.0 | 21375 | 0.2982 | 0.4040 | 0.0738 |
0.207 | 4.0 | 28500 | 0.3020 | 0.4057 | 0.0740 |
0.2047 | 5.0 | 35625 | 0.3008 | 0.4136 | 0.0790 |
0.2025 | 6.0 | 42750 | 0.3010 | 0.4156 | 0.0763 |
0.1989 | 7.0 | 49875 | 0.3064 | 0.4101 | 0.0754 |
0.1989 | 8.0 | 57000 | 0.2903 | 0.4086 | 0.0751 |
0.1973 | 9.0 | 64125 | 0.2927 | 0.4 | 0.0737 |
0.1961 | 10.0 | 71250 | 0.2882 | 0.3986 | 0.0736 |
0.1952 | 11.0 | 78375 | 0.2895 | 0.4068 | 0.0741 |
0.1943 | 12.0 | 85500 | 0.2950 | 0.4096 | 0.0754 |
0.1933 | 13.0 | 92625 | 0.2945 | 0.4086 | 0.0749 |
0.1926 | 14.0 | 99750 | 0.2933 | 0.4004 | 0.0734 |
0.1912 | 15.0 | 106875 | 0.2925 | 0.4180 | 0.0755 |
0.1909 | 16.0 | 114000 | 0.2949 | 0.4149 | 0.0751 |
0.1902 | 17.0 | 121125 | 0.2888 | 0.4045 | 0.0740 |
0.189 | 18.0 | 128250 | 0.2856 | 0.4086 | 0.0744 |
0.1885 | 19.0 | 135375 | 0.2933 | 0.4125 | 0.0745 |
0.187 | 20.0 | 142500 | 0.2930 | 0.4115 | 0.0746 |
0.1877 | 21.0 | 149625 | 0.2886 | 0.4023 | 0.0737 |
0.1867 | 22.0 | 156750 | 0.2933 | 0.4009 | 0.0730 |
0.1863 | 23.0 | 163875 | 0.2893 | 0.4040 | 0.0738 |
0.1846 | 24.0 | 171000 | 0.2920 | 0.4146 | 0.0753 |
0.185 | 25.0 | 178125 | 0.2907 | 0.4017 | 0.0730 |
0.1836 | 26.0 | 185250 | 0.2939 | 0.3992 | 0.0730 |
0.1827 | 27.0 | 192375 | 0.2934 | 0.4144 | 0.0760 |
0.1827 | 28.0 | 199500 | 0.2962 | 0.4038 | 0.0736 |
0.1818 | 29.0 | 206625 | 0.2917 | 0.4063 | 0.0750 |
0.1818 | 30.0 | 213750 | 0.2933 | 0.4090 | 0.0749 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3