PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
import gym
from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 1024,
batch_size = 64,
n_epochs = 4,
gamma = 0.999,
gae_lambda = 0.98,
ent_coef = 0.01,
verbose=1)
# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# Save the model
model_name = "unit1-ppo-LunarLander-v2"
model.save(model_name)
#evaluate model
eval_env = gym.make("LunarLander-v2")
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=30, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
...
- Downloads last month
- 1
Evaluation results
- mean_reward on LunarLander-v2self-reported276.44 +/- 18.34