asuzuki's picture
Update README.md
10493fa
metadata
library_name: stable-baselines3
tags:
  - LunarLander-v2
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: PPO
    results:
      - task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: LunarLander-v2
          type: LunarLander-v2
        metrics:
          - type: mean_reward
            value: 276.44 +/- 18.34
            name: mean_reward
            verified: false

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

TODO: Add your code

import gym

from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.

from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env

# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)

model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_steps = 1024,
    batch_size = 64,
    n_epochs = 4,
    gamma = 0.999,
    gae_lambda = 0.98,
    ent_coef = 0.01,
    verbose=1)

# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)

# Save the model
model_name = "unit1-ppo-LunarLander-v2"
model.save(model_name)

#evaluate model
eval_env = gym.make("LunarLander-v2")
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=30, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

...