English
File size: 8,015 Bytes
5019d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import h5py
import math
import numpy as np
import torch
from torch.utils.data import Dataset
from utils.basic_utils import load_json, load_json, l2_normalize_np_array, uniform_feature_sampling
from utils.tensor_utils import pad_sequences_1d



class TrainDataset(Dataset):

    def __init__(self, data_path, desc_bert_path, sub_bert_path, max_desc_len,
                 max_ctx_len, video_feat_path, clip_length, ctx_mode, normalize_vfeat=True,
                 normalize_tfeat=True):

        self.annotations = self.expand_annotations(load_json(data_path))

        self.max_desc_len = max_desc_len
        self.max_ctx_len = max_ctx_len
        self.clip_length = clip_length

        # prepare desc data
        self.use_video = "video" in ctx_mode
        self.use_sub = "sub" in ctx_mode

        self.desc_bert_h5 = h5py.File(desc_bert_path, "r")
        if self.use_video:
            self.vid_feat_h5 = h5py.File(video_feat_path, "r")
        if self.use_sub:
            self.sub_bert_h5 = h5py.File(sub_bert_path, "r")

        self.normalize_vfeat = normalize_vfeat
        self.normalize_tfeat = normalize_tfeat

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, index):
        raw_data = self.annotations[index]
        # initialize with basic data
        # meta = dict(query_id=raw_data["query_id"], desc=raw_data["query"], vid_name=raw_data["video_name"],
        #             duration=raw_data["duration"], ts=raw_data["timestamp"], simi=raw_data["similarity"], caption=raw_data["caption"])
        
        '''
        return a dictionary:
        {
            "simi":
            "query_feat":
            "video_feat":
            "sub_feat":
            "st_ed_indices":
        }
        
        '''
        query_id=raw_data["query_id"]
        video_name=raw_data["video_name"]
        timestamp = raw_data["timestamp"]
        
        model_inputs = dict()
        model_inputs["simi"] = raw_data["similarity"]
        model_inputs["query_feat"] = self.get_query_feat_by_query_id(query_id)

        ctx_l = 0
        if self.use_video:
            video_feat = uniform_feature_sampling(self.vid_feat_h5[video_name][:], self.max_ctx_len)
            if self.normalize_vfeat:
                video_feat = l2_normalize_np_array(video_feat)
            model_inputs["video_feat"] = torch.from_numpy(video_feat)
            ctx_l = len(video_feat)
        else:
            model_inputs["video_feat"] = torch.zeros((2, 2))

        if self.use_sub:  # no need for ctx feature, as the features are already contextualized
            sub_feat = uniform_feature_sampling(self.sub_bert_h5[video_name][:], self.max_ctx_len)
            if self.normalize_tfeat:
                sub_feat = l2_normalize_np_array(sub_feat)
            model_inputs["sub_feat"] = torch.from_numpy(sub_feat)
            ctx_l = len(sub_feat)
        else:
            model_inputs["sub_feat"] = torch.zeros((2, 2))

        # print(ctx_l)
        # print(timestamp)
        model_inputs["st_ed_indices"] = self.get_st_ed_label(timestamp, max_idx=ctx_l - 1)
        # print(model_inputs["st_ed_indices"])
        return model_inputs
        # return dict(meta=meta, model_inputs=model_inputs)

    def get_st_ed_label(self, ts, max_idx):
        """
        Args:
            ts: [st (float), ed (float)] in seconds, ed > st
            max_idx: length of the video
        Returns:
            [st_idx, ed_idx]: int,
        Given ts = [3.2, 7.6], st_idx = 2, ed_idx = 6,
        clips should be indexed as [2: 6), the translated back ts should be [3:9].
        """
        st_idx = min(math.floor(ts[0] / self.clip_length), max_idx)
        ed_idx = min(math.ceil(ts[1] / self.clip_length), max_idx)  # -1
        return torch.tensor([st_idx, ed_idx], dtype=torch.long)

    def get_query_feat_by_query_id(self, query_id):
        query_feat = self.desc_bert_h5[str(query_id)][:self.max_desc_len]
        if self.normalize_tfeat:
            query_feat = l2_normalize_np_array(query_feat)
        return torch.from_numpy(query_feat)

    def expand_annotations(self, annotations):
        new_annotations = []
        for i in annotations:
            query = i["query"]
            query_id = i["query_id"]
            for moment in  i["relevant_moment"]:
                moment.update({'query': query, 'query_id': query_id})
                new_annotations.append(moment)
        return new_annotations


class QueryEvalDataset(Dataset):
    def __init__(self, data_path, desc_bert_path, max_desc_len, normalize_tfeat=True):

        self.max_desc_len = max_desc_len
        self.desc_bert_h5 = h5py.File(desc_bert_path, "r")

        self.annotations = load_json(data_path)
        self.normalize_tfeat = normalize_tfeat
        self.ground_truth = self.get_relevant_moment_gt()

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, index):
        raw_data = self.annotations[index]
        query_id = raw_data["query_id"]
        query = raw_data["query"]
        model_inputs =  {"query_id": query_id,  
                         "query_feat": self.get_query_feat_by_query_id(query_id)}
        return model_inputs

    def get_query_feat_by_query_id(self, query_id):
        query_feat = self.desc_bert_h5[str(query_id)][:self.max_desc_len]
        if self.normalize_tfeat:
            query_feat = l2_normalize_np_array(query_feat)
        return torch.from_numpy(query_feat)

    def get_relevant_moment_gt(self):
        gt_all = {}
        for data in self.annotations:
            gt_all[data["query_id"]] = data["relevant_moment"]
            # gt_all.append({
            #     "query_id": data["query_id"],
            #     "relevant_moment": data["relevant_moment"]})
        return gt_all

    def get_st_ed_label(self, ts, max_idx):
        st_idx = min(math.floor(ts[0] / self.clip_length), max_idx)
        ed_idx = min(math.ceil(ts[1] / self.clip_length), max_idx)
        return torch.tensor([st_idx, ed_idx], dtype=torch.long)

    
class CorpusEvalDataset(Dataset):
    def __init__(self, corpus_path, max_ctx_len, sub_bert_path, video_feat_path, ctx_mode,
                 normalize_vfeat=True, normalize_tfeat=True):
        self.normalize_vfeat = normalize_vfeat
        self.normalize_tfeat = normalize_tfeat

        self.max_ctx_len = max_ctx_len
        
        video_data = load_json(corpus_path)
        self.video_data = [{"vid_name": k, "duration": v} for k, v in video_data.items()]
        self.corpus_video_list = list(video_data.keys())


        self.use_video = "video" in ctx_mode
        self.use_sub = "sub" in ctx_mode
        if self.use_video:
            self.vid_feat_h5 = h5py.File(video_feat_path, "r")
        if self.use_sub:
            self.sub_bert_h5 = h5py.File(sub_bert_path, "r")

    def __len__(self):
        return len(self.video_data)

    def __getitem__(self, index):
        """No need to batch, since it has already been batched here"""
        raw_data = self.video_data[index]
        # initialize with basic data
        meta = dict(vid_name=raw_data["vid_name"], duration=raw_data["duration"])
        model_inputs = dict()

        if self.use_video:
            video_feat = uniform_feature_sampling(self.vid_feat_h5[meta["vid_name"]][:], self.max_ctx_len)
            if self.normalize_vfeat:
                video_feat = l2_normalize_np_array(video_feat)
            model_inputs["video_feat"] = torch.from_numpy(video_feat)
        else:
            model_inputs["video_feat"] = torch.zeros((2, 2))

        if self.use_sub:  # no need for ctx feature, as the features are already contextualized
            sub_feat = uniform_feature_sampling(self.sub_bert_h5[meta["vid_name"]][:], self.max_ctx_len)
            if self.normalize_tfeat:
                sub_feat = l2_normalize_np_array(sub_feat)
            model_inputs["sub_feat"] = torch.from_numpy(sub_feat)
        else:
            model_inputs["sub_feat"] = torch.zeros((2, 2))
        return model_inputs