File size: 20,513 Bytes
5019d3f dae63ab 5019d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict as edict
from modules.model_components import BertAttention, LinearLayer, BertSelfAttention, TrainablePositionalEncoding
from modules.model_components import MILNCELoss
from modules.contrastive import batch_video_query_loss
class ReLoCLNet(nn.Module):
def __init__(self, config):
super(ReLoCLNet, self).__init__()
self.config = config
self.query_pos_embed = TrainablePositionalEncoding(max_position_embeddings=config.max_desc_l,
hidden_size=config.hidden_size, dropout=config.input_drop)
self.ctx_pos_embed = TrainablePositionalEncoding(max_position_embeddings=config.max_ctx_l,
hidden_size=config.hidden_size, dropout=config.input_drop)
self.query_input_proj = LinearLayer(config.query_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.query_encoder = BertAttention(edict(hidden_size=config.hidden_size, intermediate_size=config.hidden_size,
hidden_dropout_prob=config.drop, num_attention_heads=config.n_heads,
attention_probs_dropout_prob=config.drop))
self.query_encoder1 = copy.deepcopy(self.query_encoder)
cross_att_cfg = edict(hidden_size=config.hidden_size, num_attention_heads=config.n_heads,
attention_probs_dropout_prob=config.drop)
# use_video
self.video_input_proj = LinearLayer(config.visual_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.video_encoder1 = copy.deepcopy(self.query_encoder)
self.video_encoder2 = copy.deepcopy(self.query_encoder)
self.video_encoder3 = copy.deepcopy(self.query_encoder)
self.video_cross_att = BertSelfAttention(cross_att_cfg)
self.video_cross_layernorm = nn.LayerNorm(config.hidden_size)
self.video_query_linear = nn.Linear(config.hidden_size, config.hidden_size)
# use_sub
self.sub_input_proj = LinearLayer(config.sub_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.sub_encoder1 = copy.deepcopy(self.query_encoder)
self.sub_encoder2 = copy.deepcopy(self.query_encoder)
self.sub_encoder3 = copy.deepcopy(self.query_encoder)
self.sub_cross_att = BertSelfAttention(cross_att_cfg)
self.sub_cross_layernorm = nn.LayerNorm(config.hidden_size)
self.sub_query_linear = nn.Linear(config.hidden_size, config.hidden_size)
self.modular_vector_mapping = nn.Linear(in_features=config.hidden_size, out_features=2, bias=False)
conv_cfg = dict(in_channels=1, out_channels=1, kernel_size=config.conv_kernel_size,
stride=config.conv_stride, padding=config.conv_kernel_size // 2, bias=False)
self.merged_st_predictor = nn.Conv1d(**conv_cfg)
self.merged_ed_predictor = nn.Conv1d(**conv_cfg)
# self.temporal_criterion = nn.CrossEntropyLoss(reduction="mean")
self.temporal_criterion = nn.CrossEntropyLoss(reduction="none")
self.nce_criterion = MILNCELoss(reduction=False)
# self.nce_criterion = MILNCELoss(reduction='mean')
self.reset_parameters()
def reset_parameters(self):
""" Initialize the weights."""
def re_init(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
module.reset_parameters()
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
self.apply(re_init)
def set_hard_negative(self, use_hard_negative, hard_pool_size):
"""use_hard_negative: bool; hard_pool_size: int, """
self.config.use_hard_negative = use_hard_negative
self.config.hard_pool_size = hard_pool_size
def forward(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, st_ed_indices, match_labels, simi):
"""
Args:
query_feat: (N, Lq, Dq)
query_mask: (N, Lq)
video_feat: (N, Lv, Dv) or None
video_mask: (N, Lv) or None
sub_feat: (N, Lv, Ds) or None
sub_mask: (N, Lv) or None
st_ed_indices: (N, 2), torch.LongTensor, 1st, 2nd columns are st, ed labels respectively.
match_labels: (N, Lv), torch.LongTensor, matching labels for detecting foreground and background (not used)
"""
video_feat, sub_feat, mid_x_video_feat, mid_x_sub_feat, x_video_feat, x_sub_feat = self.encode_context(
video_feat, video_mask, sub_feat, sub_mask, return_mid_output=True)
video_query, sub_query, query_context_scores, st_prob, ed_prob = self.get_pred_from_raw_query(
query_feat, query_mask, x_video_feat, video_mask, x_sub_feat, sub_mask, cross=False,
return_query_feats=True)
# frame level contrastive learning loss (FrameCL)
loss_fcl = 0
if self.config.lw_fcl != 0:
loss_fcl_vq = batch_video_query_loss(mid_x_video_feat, video_query, match_labels, video_mask, measure='JSD')
loss_fcl_sq = batch_video_query_loss(mid_x_sub_feat, sub_query, match_labels, sub_mask, measure='JSD')
loss_fcl = (loss_fcl_vq + loss_fcl_sq) / 2.0
loss_fcl = self.config.lw_fcl * loss_fcl
# video level contrastive learning loss (VideoCL)
loss_vcl = 0
if self.config.lw_vcl != 0:
mid_video_q2ctx_scores = self.get_unnormalized_video_level_scores(video_query, mid_x_video_feat, video_mask)
mid_sub_q2ctx_scores = self.get_unnormalized_video_level_scores(sub_query, mid_x_sub_feat, sub_mask)
mid_video_q2ctx_scores, _ = torch.max(mid_video_q2ctx_scores, dim=1)
mid_sub_q2ctx_scores, _ = torch.max(mid_sub_q2ctx_scores, dim=1)
# exclude the contrastive loss for the same query
mid_q2ctx_scores = (mid_video_q2ctx_scores + mid_sub_q2ctx_scores) / 2.0 # * video_contrastive_mask
loss_vcl = self.nce_criterion(mid_q2ctx_scores)
loss_vcl = self.config.lw_vcl * loss_vcl
# moment localization loss
loss_st_ed = 0
if self.config.lw_st_ed != 0:
loss_st = self.temporal_criterion(st_prob, st_ed_indices[:, 0])
loss_ed = self.temporal_criterion(ed_prob, st_ed_indices[:, 1])
loss_st_ed = loss_st + loss_ed
loss_st_ed = self.config.lw_st_ed * loss_st_ed
# video level retrieval loss
loss_neg_ctx, loss_neg_q = 0, 0
if self.config.lw_neg_ctx != 0 or self.config.lw_neg_q != 0:
loss_neg_ctx, loss_neg_q = self.get_video_level_loss(query_context_scores)
loss_neg_ctx = self.config.lw_neg_ctx * loss_neg_ctx
loss_neg_q = self.config.lw_neg_q * loss_neg_q
# sum loss
# loss = loss_fcl + loss_vcl + loss_st_ed + loss_neg_ctx + loss_neg_q
# simi = torch.exp(10*(simi-0.7))
simi = simi
loss = ((loss_fcl + loss_vcl + loss_st_ed) * simi).mean() + loss_neg_ctx + loss_neg_q
return loss
def encode_query(self, query_feat, query_mask):
encoded_query = self.encode_input(query_feat, query_mask, self.query_input_proj, self.query_encoder,
self.query_pos_embed) # (N, Lq, D)
encoded_query = self.query_encoder1(encoded_query, query_mask.unsqueeze(1))
video_query, sub_query = self.get_modularized_queries(encoded_query, query_mask) # (N, D) * 2
return video_query, sub_query
def encode_context(self, video_feat, video_mask, sub_feat, sub_mask, return_mid_output=False):
# encoding video and subtitle features, respectively
encoded_video_feat = self.encode_input(video_feat, video_mask, self.video_input_proj, self.video_encoder1,
self.ctx_pos_embed)
encoded_sub_feat = self.encode_input(sub_feat, sub_mask, self.sub_input_proj, self.sub_encoder1,
self.ctx_pos_embed)
# cross encoding subtitle features
x_encoded_video_feat = self.cross_context_encoder(encoded_video_feat, video_mask, encoded_sub_feat, sub_mask,
self.video_cross_att, self.video_cross_layernorm) # (N, L, D)
x_encoded_video_feat_ = self.video_encoder2(x_encoded_video_feat, video_mask.unsqueeze(1))
# cross encoding video features
x_encoded_sub_feat = self.cross_context_encoder(encoded_sub_feat, sub_mask, encoded_video_feat, video_mask,
self.sub_cross_att, self.sub_cross_layernorm) # (N, L, D)
x_encoded_sub_feat_ = self.sub_encoder2(x_encoded_sub_feat, sub_mask.unsqueeze(1))
# additional self encoding process
x_encoded_video_feat = self.video_encoder3(x_encoded_video_feat_, video_mask.unsqueeze(1))
x_encoded_sub_feat = self.sub_encoder3(x_encoded_sub_feat_, sub_mask.unsqueeze(1))
if return_mid_output:
return (encoded_video_feat, encoded_sub_feat, x_encoded_video_feat_, x_encoded_sub_feat_,
x_encoded_video_feat, x_encoded_sub_feat)
else:
return x_encoded_video_feat, x_encoded_sub_feat
@staticmethod
def cross_context_encoder(main_context_feat, main_context_mask, side_context_feat, side_context_mask,
cross_att_layer, norm_layer):
"""
Args:
main_context_feat: (N, Lq, D)
main_context_mask: (N, Lq)
side_context_feat: (N, Lk, D)
side_context_mask: (N, Lk)
cross_att_layer: cross attention layer
norm_layer: layer norm layer
"""
cross_mask = torch.einsum("bm,bn->bmn", main_context_mask, side_context_mask) # (N, Lq, Lk)
cross_out = cross_att_layer(main_context_feat, side_context_feat, side_context_feat, cross_mask) # (N, Lq, D)
residual_out = norm_layer(cross_out + main_context_feat)
return residual_out
@staticmethod
def encode_input(feat, mask, input_proj_layer, encoder_layer, pos_embed_layer):
"""
Args:
feat: (N, L, D_input), torch.float32
mask: (N, L), torch.float32, with 1 indicates valid query, 0 indicates mask
input_proj_layer: down project input
encoder_layer: encoder layer
pos_embed_layer: positional embedding layer
"""
feat = input_proj_layer(feat)
feat = pos_embed_layer(feat)
mask = mask.unsqueeze(1) # (N, 1, L), torch.FloatTensor
feat = encoder_layer(feat, mask) # (N, L, D_hidden)
return feat
def get_modularized_queries(self, encoded_query, query_mask, return_modular_att=False):
"""
Args:
encoded_query: (N, L, D)
query_mask: (N, L)
return_modular_att: bool
"""
modular_attention_scores = self.modular_vector_mapping(encoded_query) # (N, L, 2 or 1)
modular_attention_scores = F.softmax(mask_logits(modular_attention_scores, query_mask.unsqueeze(2)), dim=1)
modular_queries = torch.einsum("blm,bld->bmd", modular_attention_scores, encoded_query) # (N, 2 or 1, D)
if return_modular_att:
assert modular_queries.shape[1] == 2
return modular_queries[:, 0], modular_queries[:, 1], modular_attention_scores
else:
assert modular_queries.shape[1] == 2
return modular_queries[:, 0], modular_queries[:, 1] # (N, D) * 2
@staticmethod
def get_video_level_scores(modularied_query, context_feat, context_mask):
""" Calculate video2query scores for each pair of video and query inside the batch.
Args:
modularied_query: (N, D)
context_feat: (N, L, D), output of the first transformer encoder layer
context_mask: (N, L)
Returns:
context_query_scores: (N, N) score of each query w.r.t. each video inside the batch,
diagonal positions are positive. used to get negative samples.
"""
modularied_query = F.normalize(modularied_query, dim=-1)
context_feat = F.normalize(context_feat, dim=-1)
query_context_scores = torch.einsum("md,nld->mln", modularied_query, context_feat) # (N, L, N)
context_mask = context_mask.transpose(0, 1).unsqueeze(0) # (1, L, N)
query_context_scores = mask_logits(query_context_scores, context_mask) # (N, L, N)
query_context_scores, _ = torch.max(query_context_scores, dim=1) # (N, N) diagonal positions are positive pairs
return query_context_scores
@staticmethod
def get_unnormalized_video_level_scores(modularied_query, context_feat, context_mask):
""" Calculate video2query scores for each pair of video and query inside the batch.
Args:
modularied_query: (N, D)
context_feat: (N, L, D), output of the first transformer encoder layer
context_mask: (N, L)
Returns:
context_query_scores: (N, N) score of each query w.r.t. each video inside the batch,
diagonal positions are positive. used to get negative samples.
"""
query_context_scores = torch.einsum("md,nld->mln", modularied_query, context_feat) # (N, L, N)
context_mask = context_mask.transpose(0, 1).unsqueeze(0) # (1, L, N)
query_context_scores = mask_logits(query_context_scores, context_mask) # (N, L, N)
return query_context_scores
def get_merged_score(self, video_query, video_feat, sub_query, sub_feat, cross=False):
video_query = self.video_query_linear(video_query)
sub_query = self.sub_query_linear(sub_query)
if cross:
video_similarity = torch.einsum("md,nld->mnl", video_query, video_feat)
sub_similarity = torch.einsum("md,nld->mnl", sub_query, sub_feat)
similarity = (video_similarity + sub_similarity) / 2 # (Nq, Nv, L) from query to all videos.
else:
video_similarity = torch.einsum("bd,bld->bl", video_query, video_feat) # (N, L)
sub_similarity = torch.einsum("bd,bld->bl", sub_query, sub_feat) # (N, L)
similarity = (video_similarity + sub_similarity) / 2
return similarity
def get_merged_st_ed_prob(self, similarity, context_mask, cross=False):
if cross:
n_q, n_c, length = similarity.shape
similarity = similarity.view(n_q * n_c, 1, length)
st_prob = self.merged_st_predictor(similarity).view(n_q, n_c, length) # (Nq, Nv, L)
ed_prob = self.merged_ed_predictor(similarity).view(n_q, n_c, length) # (Nq, Nv, L)
else:
st_prob = self.merged_st_predictor(similarity.unsqueeze(1)).squeeze() # (N, L)
ed_prob = self.merged_ed_predictor(similarity.unsqueeze(1)).squeeze() # (N, L)
st_prob = mask_logits(st_prob, context_mask) # (N, L)
ed_prob = mask_logits(ed_prob, context_mask)
return st_prob, ed_prob
def get_pred_from_raw_query(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, cross=False,
return_query_feats=False):
"""
Args:
query_feat: (N, Lq, Dq)
query_mask: (N, Lq)
video_feat: (N, Lv, D) or None
video_mask: (N, Lv)
sub_feat: (N, Lv, D) or None
sub_mask: (N, Lv)
cross:
return_query_feats:
"""
video_query, sub_query = self.encode_query(query_feat, query_mask)
# get video-level retrieval scores
video_q2ctx_scores = self.get_video_level_scores(video_query, video_feat, video_mask)
sub_q2ctx_scores = self.get_video_level_scores(sub_query, sub_feat, sub_mask)
q2ctx_scores = (video_q2ctx_scores + sub_q2ctx_scores) / 2 # (N, N)
# compute start and end probs
similarity = self.get_merged_score(video_query, video_feat, sub_query, sub_feat, cross=cross)
st_prob, ed_prob = self.get_merged_st_ed_prob(similarity, video_mask, cross=cross)
if return_query_feats:
return video_query, sub_query, q2ctx_scores, st_prob, ed_prob
else:
return q2ctx_scores, st_prob, ed_prob # un-normalized masked probabilities!!!!!
def get_video_level_loss(self, query_context_scores):
""" ranking loss between (pos. query + pos. video) and (pos. query + neg. video) or (neg. query + pos. video)
Args:
query_context_scores: (N, N), cosine similarity [-1, 1],
Each row contains the scores between the query to each of the videos inside the batch.
"""
bsz = len(query_context_scores)
diagonal_indices = torch.arange(bsz).to(query_context_scores.device)
pos_scores = query_context_scores[diagonal_indices, diagonal_indices] # (N, )
query_context_scores_masked = copy.deepcopy(query_context_scores.data)
# impossibly large for cosine similarity, the copy is created as modifying the original will cause error
query_context_scores_masked[diagonal_indices, diagonal_indices] = 999
pos_query_neg_context_scores = self.get_neg_scores(query_context_scores, query_context_scores_masked)
neg_query_pos_context_scores = self.get_neg_scores(query_context_scores.transpose(0, 1),
query_context_scores_masked.transpose(0, 1))
loss_neg_ctx = self.get_ranking_loss(pos_scores, pos_query_neg_context_scores)
loss_neg_q = self.get_ranking_loss(pos_scores, neg_query_pos_context_scores)
return loss_neg_ctx, loss_neg_q
def get_neg_scores(self, scores, scores_masked):
"""
scores: (N, N), cosine similarity [-1, 1],
Each row are scores: query --> all videos. Transposed version: video --> all queries.
scores_masked: (N, N) the same as scores, except that the diagonal (positive) positions
are masked with a large value.
"""
bsz = len(scores)
batch_indices = torch.arange(bsz).to(scores.device)
_, sorted_scores_indices = torch.sort(scores_masked, descending=True, dim=1)
sample_min_idx = 1 # skip the masked positive
sample_max_idx = min(sample_min_idx + self.config.hard_pool_size, bsz) if self.config.use_hard_negative else bsz
# (N, )
sampled_neg_score_indices = sorted_scores_indices[batch_indices, torch.randint(sample_min_idx, sample_max_idx,
size=(bsz,)).to(scores.device)]
sampled_neg_scores = scores[batch_indices, sampled_neg_score_indices] # (N, )
return sampled_neg_scores
def get_ranking_loss(self, pos_score, neg_score):
""" Note here we encourage positive scores to be larger than negative scores.
Args:
pos_score: (N, ), torch.float32
neg_score: (N, ), torch.float32
"""
if self.config.ranking_loss_type == "hinge": # max(0, m + S_neg - S_pos)
return torch.clamp(self.config.margin + neg_score - pos_score, min=0).sum() / len(pos_score)
elif self.config.ranking_loss_type == "lse": # log[1 + exp(S_neg - S_pos)]
return torch.log1p(torch.exp(neg_score - pos_score)).sum() / len(pos_score)
else:
raise NotImplementedError("Only support 'hinge' and 'lse'")
def mask_logits(target, mask):
return target * mask + (1 - mask) * (-1e10)
|