English
File size: 13,308 Bytes
5019d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


def onehot(indexes, N=None):
    """
    Creates a one-representation of indexes with N possible entries
    if N is not specified, it will suit the maximum index appearing.
    indexes is a long-tensor of indexes
    """
    if N is None:
        N = indexes.max() + 1
    sz = list(indexes.size())
    output = indexes.new().long().resize_(*sz, N).zero_()
    output.scatter_(-1, indexes.unsqueeze(-1), 1)
    return output


class SmoothedCrossEntropyLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super(SmoothedCrossEntropyLoss, self).__init__()
        self.reduction = reduction

    def forward(self, logits, labels, smooth_eps=0.1, mask=None, from_logits=True):
        """
        Args:
            logits: (N, Lv), unnormalized probabilities, torch.float32
            labels: (N, Lv) or (N, ), one hot labels or indices labels, torch.float32 or torch.int64
            smooth_eps: float
            mask: (N, Lv)
            from_logits: bool
        """
        if from_logits:
            probs = F.log_softmax(logits, dim=-1)
        else:
            probs = logits
        num_classes = probs.size()[-1]
        if len(probs.size()) > len(labels.size()):
            labels = onehot(labels, num_classes).type(probs.dtype)
        if mask is None:
            labels = labels * (1 - smooth_eps) + smooth_eps / num_classes
        else:
            mask = mask.type(probs.dtype)
            valid_samples = torch.sum(mask, dim=-1, keepdim=True, dtype=probs.dtype)  # (N, 1)
            eps_per_sample = smooth_eps / valid_samples
            labels = (labels * (1 - smooth_eps) + eps_per_sample) * mask
        loss = -torch.sum(labels * probs, dim=-1)
        if self.reduction == 'sum':
            return torch.sum(loss)
        elif self.reduction == 'mean':
            return torch.mean(loss)
        else:
            return loss  # (N, )


class MILNCELoss(nn.Module):
    def __init__(self, reduction='mean'):
        super(MILNCELoss, self).__init__()
        self.reduction = reduction

    def forward(self, q2ctx_scores=None, contexts=None, queries=None):
        if q2ctx_scores is None:
            assert contexts is not None and queries is not None
            x = torch.matmul(contexts, queries.t())
            device = contexts.device
            bsz = contexts.shape[0]
        else:
            x = q2ctx_scores
            device = q2ctx_scores.device
            bsz = q2ctx_scores.shape[0]
        x = x.view(bsz, bsz, -1)
        nominator = x * torch.eye(x.shape[0], dtype=torch.float32, device=device)[:, :, None]
        nominator = nominator.sum(dim=1)
        nominator = torch.logsumexp(nominator, dim=1)
        denominator = torch.cat((x, x.permute(1, 0, 2)), dim=1).view(x.shape[0], -1)
        denominator = torch.logsumexp(denominator, dim=1)
        if self.reduction:
            return torch.mean(denominator - nominator)
        else:
            return denominator - nominator


class DepthwiseSeparableConv(nn.Module):
    """
    Depth-wise separable convolution uses less parameters to generate output by convolution.
    :Examples:
        >>> m = DepthwiseSeparableConv(300, 200, 5, dim=1)
        >>> input_tensor = torch.randn(32, 300, 20)
        >>> output = m(input_tensor)
    """
    def __init__(self, in_ch, out_ch, k, dim=1, relu=True):
        """
        :param in_ch: input hidden dimension size
        :param out_ch: output hidden dimension size
        :param k: kernel size
        :param dim: default 1. 1D conv or 2D conv
        """
        super(DepthwiseSeparableConv, self).__init__()
        self.relu = relu
        if dim == 1:
            self.depthwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch,
                                            padding=k // 2)
            self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0)
        elif dim == 2:
            self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch,
                                            padding=k // 2)
            self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0)
        else:
            raise Exception("Incorrect dimension!")

    def forward(self, x):
        """
        :Input: (N, L_in, D)
        :Output: (N, L_out, D)
        """
        x = x.transpose(1, 2)
        if self.relu:
            out = F.relu(self.pointwise_conv(self.depthwise_conv(x)), inplace=True)
        else:
            out = self.pointwise_conv(self.depthwise_conv(x))
        return out.transpose(1, 2)  # (N, L, D)


class ConvEncoder(nn.Module):
    def __init__(self, kernel_size=7, n_filters=128, dropout=0.1):
        super(ConvEncoder, self).__init__()
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(n_filters)
        self.conv = DepthwiseSeparableConv(in_ch=n_filters, out_ch=n_filters, k=kernel_size, relu=True)

    def forward(self, x):
        """
        :param x: (N, L, D)
        :return: (N, L, D)
        """
        return self.layer_norm(self.dropout(self.conv(x)) + x)  # (N, L, D)


class TrainablePositionalEncoding(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""
    def __init__(self, max_position_embeddings, hidden_size, dropout=0.1):
        super(TrainablePositionalEncoding, self).__init__()
        self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
        self.LayerNorm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, input_feat):
        bsz, seq_length = input_feat.shape[:2]
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device)
        position_ids = position_ids.unsqueeze(0).repeat(bsz, 1)  # (N, L)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = self.LayerNorm(input_feat + position_embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def add_position_emb(self, input_feat):
        bsz, seq_length = input_feat.shape[:2]
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device)
        position_ids = position_ids.unsqueeze(0).repeat(bsz, 1)  # (N, L)
        position_embeddings = self.position_embeddings(position_ids)
        return input_feat + position_embeddings


class LinearLayer(nn.Module):
    """linear layer configurable with layer normalization, dropout, ReLU."""
    def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True):
        super(LinearLayer, self).__init__()
        self.relu = relu
        self.layer_norm = layer_norm
        if layer_norm:
            self.LayerNorm = nn.LayerNorm(in_hsz)
        layers = [nn.Dropout(dropout), nn.Linear(in_hsz, out_hsz)]
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        """(N, L, D)"""
        if self.layer_norm:
            x = self.LayerNorm(x)
        x = self.net(x)
        if self.relu:
            x = F.relu(x, inplace=True)
        return x  # (N, L, D)


class BertLayer(nn.Module):
    def __init__(self, config, use_self_attention=True):
        super(BertLayer, self).__init__()
        self.use_self_attention = use_self_attention
        if use_self_attention:
            self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        """
        Args:
            hidden_states:  (N, L, D)
            attention_mask:  (N, L) with 1 indicate valid, 0 indicates invalid
        """
        if self.use_self_attention:
            attention_output = self.attention(hidden_states, attention_mask)
        else:
            attention_output = hidden_states
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        """
        Args:
            input_tensor: (N, L, D)
            attention_mask: (N, L)
        """
        self_output = self.self(input_tensor, input_tensor, input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Sequential(nn.Linear(config.hidden_size, config.intermediate_size), nn.ReLU(True))

    def forward(self, hidden_states):
        return self.dense(hidden_states)


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError("The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (
                config.hidden_size, config.num_attention_heads))
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)  # (N, L, nh, dh)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)  # (N, nh, L, dh)

    def forward(self, query_states, key_states, value_states, attention_mask):
        """
        Args:
            query_states: (N, Lq, D)
            key_states: (N, L, D)
            value_states: (N, L, D)
            attention_mask: (N, Lq, L)
        """
        # only need to mask the dimension where the softmax (last dim) is applied, as another dim (second last)
        # will be ignored in future computation anyway
        attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.  # (N, 1, Lq, L)
        mixed_query_layer = self.query(query_states)
        mixed_key_layer = self.key(key_states)
        mixed_value_layer = self.value(value_states)
        # transpose
        query_layer = self.transpose_for_scores(mixed_query_layer)  # (N, nh, Lq, dh)
        key_layer = self.transpose_for_scores(mixed_key_layer)  # (N, nh, L, dh)
        value_layer = self.transpose_for_scores(mixed_value_layer)  # (N, nh, L, dh)
        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))  # (N, nh, Lq, L)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask
        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)
        # compute output context
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states