|
import os, json |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from modules.dataset_init import prepare_dataset |
|
from modules.infer_lib import grab_corpus_feature, eval_epoch |
|
|
|
from utils.basic_utils import AverageMeter, get_logger |
|
from utils.setup import set_seed, get_args |
|
from utils.run_utils import prepare_optimizer, prepare_model, logger_ndcg_iou |
|
|
|
def main(): |
|
opt = get_args() |
|
logger = get_logger(opt.results_path, opt.exp_id) |
|
set_seed(opt.seed) |
|
logger.info("Arguments:\n%s", json.dumps(vars(opt), indent=4)) |
|
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
logger.info(f"device: {opt.device}") |
|
|
|
train_loader, corpus_loader, corpus_video_list, val_loader, test_loader, val_gt, test_gt = prepare_dataset(opt) |
|
|
|
model = prepare_model(opt, logger) |
|
|
|
|
|
corpus_feature = grab_corpus_feature(model, corpus_loader, opt.device) |
|
val_ndcg_iou = eval_epoch(model, corpus_feature, val_loader, val_gt, opt, corpus_video_list) |
|
test_ndcg_iou = eval_epoch(model, corpus_feature, test_loader, test_gt, opt, corpus_video_list) |
|
|
|
logger_ndcg_iou(val_ndcg_iou, logger, "VAL") |
|
logger_ndcg_iou(test_ndcg_iou, logger, "TEST") |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|