English
TVR-Ranking / modules /optimization.py
Liangrj5
init
5019d3f
raw
history blame
14.5 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
import logging
import abc
import sys
logger = logging.getLogger(__name__)
if sys.version_info >= (3, 4):
ABC = abc.ABC
else:
ABC = abc.ABCMeta('ABC', (), {})
class _LRSchedule(ABC):
""" Parent of all LRSchedules here. """
warn_t_total = False # is set to True for schedules where progressing beyond t_total steps doesn't make sense
def __init__(self, warmup=0.002, t_total=-1, **kw):
"""
:param warmup: what fraction of t_total steps will be used for linear warmup
:param t_total: how many training steps (updates) are planned
:param kw:
"""
super(_LRSchedule, self).__init__(**kw)
if t_total < 0:
logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
warmup = max(warmup, 0.)
self.warmup, self.t_total = float(warmup), float(t_total)
self.warned_for_t_total_at_progress = -1
def get_lr(self, step, nowarn=False):
"""
:param step: which of t_total steps we're on
:param nowarn: set to True to suppress warning regarding training beyond specified 't_total' steps
:return: learning rate multiplier for current update
"""
if self.t_total < 0:
return 1.
progress = float(step) / self.t_total
ret = self.get_lr_(progress)
# warning for exceeding t_total (only active with warmup_linear
if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
logger.warning("Training beyond specified 't_total'. Learning rate multiplier set to {}. Please "
"set 't_total' of {} correctly.".format(ret, self.__class__.__name__))
self.warned_for_t_total_at_progress = progress
# end warning
return ret
@abc.abstractmethod
def get_lr_(self, progress):
"""
:param progress: value between 0 and 1 (unless going beyond t_total steps) specifying training progress
:return: learning rate multiplier for current update
"""
return 1.
class ConstantLR(_LRSchedule):
def get_lr_(self, progress):
return 1.
class WarmupCosineSchedule(_LRSchedule):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
"""
warn_t_total = True
def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
"""
:param warmup: see LRSchedule
:param t_total: see LRSchedule
:param cycles: number of cycles. Default: 0.5, corresponding to cosine decay from 1.
at progress==warmup and 0 at progress==1.
:param kw:
"""
super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
self.cycles = cycles
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
else:
progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup
return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress))
class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
learning rate (with hard restarts).
"""
def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
assert(cycles >= 1.)
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
else:
progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup
ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1)))
return ret
class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule):
"""
All training progress is divided in `cycles` (default=1.) parts of equal length.
Every part follows a schedule with the first `warmup` fraction of training steps linearly increasing from 0. to 1.,
followed by a learning rate decreasing from 1. to 0. following a cosine curve.
"""
def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
assert(warmup * cycles < 1.)
warmup = warmup * cycles if warmup >= 0 else warmup
super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles,
**kw)
def get_lr_(self, progress):
progress = progress * self.cycles % 1.
if progress < self.warmup:
return progress / self.warmup
else:
progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup
ret = 0.5 * (1. + math.cos(math.pi * progress))
return ret
class WarmupConstantSchedule(_LRSchedule):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
Keeps learning rate equal to 1. after warmup.
"""
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
return 1.
class WarmupLinearSchedule(_LRSchedule):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps.
"""
warn_t_total = True
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
return max((progress - 1.) / (self.warmup - 1.), 0.)
SCHEDULES = {
None: ConstantLR,
"none": ConstantLR,
"warmup_cosine": WarmupCosineSchedule,
"warmup_constant": WarmupConstantSchedule,
"warmup_linear": WarmupLinearSchedule
}
class EMA(object):
""" Exponential Moving Average for model parameters.
references:
[1] https://github.com/BangLiu/QANet-PyTorch/blob/master/model/modules/ema.py
[2] https://github.com/hengruo/QANet-pytorch/blob/e2de07cd2c711d525f5ffee35c3764335d4b501d/main.py"""
def __init__(self, decay):
self.decay = decay
self.shadow = {}
self.original = {}
def register(self, name, val):
self.shadow[name] = val.clone()
def __call__(self, model, step):
decay = min(self.decay, (1 + step) / (10.0 + step))
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = \
(1.0 - decay) * param.data + decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def assign(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.original[name] = param.data.clone()
param.data = self.shadow[name]
def resume(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
param.data = self.original[name]
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1
schedule: schedule to use for the warmup (see above).
Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object
(see below).
If `None` or `'none'`, learning rate is always kept constant.
Default : `'warmup_linear'`
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
# initialize schedule object
if not isinstance(schedule, _LRSchedule):
schedule_type = SCHEDULES[schedule]
schedule = schedule_type(warmup=warmup, t_total=t_total)
else:
if warmup != -1 or t_total != -1:
logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is "
"provided as schedule. Please specify custom warmup and t_total in _LRSchedule object.")
defaults = dict(lr=lr, schedule=schedule,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
lr_scheduled = group['lr']
lr_scheduled *= group['schedule'].get_lr(state['step'])
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(grad, alpha=1 - beta1)
next_v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
lr_scheduled = group['lr']
lr_scheduled *= group['schedule'].get_lr(state['step'])
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss