English
TVR-Ranking / modules /ReLoCLNet.py
Liangrj5
correct ndcg-iou
dae63ab
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict as edict
from modules.model_components import BertAttention, LinearLayer, BertSelfAttention, TrainablePositionalEncoding
from modules.model_components import MILNCELoss
from modules.contrastive import batch_video_query_loss
class ReLoCLNet(nn.Module):
def __init__(self, config):
super(ReLoCLNet, self).__init__()
self.config = config
self.query_pos_embed = TrainablePositionalEncoding(max_position_embeddings=config.max_desc_l,
hidden_size=config.hidden_size, dropout=config.input_drop)
self.ctx_pos_embed = TrainablePositionalEncoding(max_position_embeddings=config.max_ctx_l,
hidden_size=config.hidden_size, dropout=config.input_drop)
self.query_input_proj = LinearLayer(config.query_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.query_encoder = BertAttention(edict(hidden_size=config.hidden_size, intermediate_size=config.hidden_size,
hidden_dropout_prob=config.drop, num_attention_heads=config.n_heads,
attention_probs_dropout_prob=config.drop))
self.query_encoder1 = copy.deepcopy(self.query_encoder)
cross_att_cfg = edict(hidden_size=config.hidden_size, num_attention_heads=config.n_heads,
attention_probs_dropout_prob=config.drop)
# use_video
self.video_input_proj = LinearLayer(config.visual_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.video_encoder1 = copy.deepcopy(self.query_encoder)
self.video_encoder2 = copy.deepcopy(self.query_encoder)
self.video_encoder3 = copy.deepcopy(self.query_encoder)
self.video_cross_att = BertSelfAttention(cross_att_cfg)
self.video_cross_layernorm = nn.LayerNorm(config.hidden_size)
self.video_query_linear = nn.Linear(config.hidden_size, config.hidden_size)
# use_sub
self.sub_input_proj = LinearLayer(config.sub_input_size, config.hidden_size, layer_norm=True,
dropout=config.input_drop, relu=True)
self.sub_encoder1 = copy.deepcopy(self.query_encoder)
self.sub_encoder2 = copy.deepcopy(self.query_encoder)
self.sub_encoder3 = copy.deepcopy(self.query_encoder)
self.sub_cross_att = BertSelfAttention(cross_att_cfg)
self.sub_cross_layernorm = nn.LayerNorm(config.hidden_size)
self.sub_query_linear = nn.Linear(config.hidden_size, config.hidden_size)
self.modular_vector_mapping = nn.Linear(in_features=config.hidden_size, out_features=2, bias=False)
conv_cfg = dict(in_channels=1, out_channels=1, kernel_size=config.conv_kernel_size,
stride=config.conv_stride, padding=config.conv_kernel_size // 2, bias=False)
self.merged_st_predictor = nn.Conv1d(**conv_cfg)
self.merged_ed_predictor = nn.Conv1d(**conv_cfg)
# self.temporal_criterion = nn.CrossEntropyLoss(reduction="mean")
self.temporal_criterion = nn.CrossEntropyLoss(reduction="none")
self.nce_criterion = MILNCELoss(reduction=False)
# self.nce_criterion = MILNCELoss(reduction='mean')
self.reset_parameters()
def reset_parameters(self):
""" Initialize the weights."""
def re_init(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
module.reset_parameters()
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
self.apply(re_init)
def set_hard_negative(self, use_hard_negative, hard_pool_size):
"""use_hard_negative: bool; hard_pool_size: int, """
self.config.use_hard_negative = use_hard_negative
self.config.hard_pool_size = hard_pool_size
def forward(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, st_ed_indices, match_labels, simi):
"""
Args:
query_feat: (N, Lq, Dq)
query_mask: (N, Lq)
video_feat: (N, Lv, Dv) or None
video_mask: (N, Lv) or None
sub_feat: (N, Lv, Ds) or None
sub_mask: (N, Lv) or None
st_ed_indices: (N, 2), torch.LongTensor, 1st, 2nd columns are st, ed labels respectively.
match_labels: (N, Lv), torch.LongTensor, matching labels for detecting foreground and background (not used)
"""
video_feat, sub_feat, mid_x_video_feat, mid_x_sub_feat, x_video_feat, x_sub_feat = self.encode_context(
video_feat, video_mask, sub_feat, sub_mask, return_mid_output=True)
video_query, sub_query, query_context_scores, st_prob, ed_prob = self.get_pred_from_raw_query(
query_feat, query_mask, x_video_feat, video_mask, x_sub_feat, sub_mask, cross=False,
return_query_feats=True)
# frame level contrastive learning loss (FrameCL)
loss_fcl = 0
if self.config.lw_fcl != 0:
loss_fcl_vq = batch_video_query_loss(mid_x_video_feat, video_query, match_labels, video_mask, measure='JSD')
loss_fcl_sq = batch_video_query_loss(mid_x_sub_feat, sub_query, match_labels, sub_mask, measure='JSD')
loss_fcl = (loss_fcl_vq + loss_fcl_sq) / 2.0
loss_fcl = self.config.lw_fcl * loss_fcl
# video level contrastive learning loss (VideoCL)
loss_vcl = 0
if self.config.lw_vcl != 0:
mid_video_q2ctx_scores = self.get_unnormalized_video_level_scores(video_query, mid_x_video_feat, video_mask)
mid_sub_q2ctx_scores = self.get_unnormalized_video_level_scores(sub_query, mid_x_sub_feat, sub_mask)
mid_video_q2ctx_scores, _ = torch.max(mid_video_q2ctx_scores, dim=1)
mid_sub_q2ctx_scores, _ = torch.max(mid_sub_q2ctx_scores, dim=1)
# exclude the contrastive loss for the same query
mid_q2ctx_scores = (mid_video_q2ctx_scores + mid_sub_q2ctx_scores) / 2.0 # * video_contrastive_mask
loss_vcl = self.nce_criterion(mid_q2ctx_scores)
loss_vcl = self.config.lw_vcl * loss_vcl
# moment localization loss
loss_st_ed = 0
if self.config.lw_st_ed != 0:
loss_st = self.temporal_criterion(st_prob, st_ed_indices[:, 0])
loss_ed = self.temporal_criterion(ed_prob, st_ed_indices[:, 1])
loss_st_ed = loss_st + loss_ed
loss_st_ed = self.config.lw_st_ed * loss_st_ed
# video level retrieval loss
loss_neg_ctx, loss_neg_q = 0, 0
if self.config.lw_neg_ctx != 0 or self.config.lw_neg_q != 0:
loss_neg_ctx, loss_neg_q = self.get_video_level_loss(query_context_scores)
loss_neg_ctx = self.config.lw_neg_ctx * loss_neg_ctx
loss_neg_q = self.config.lw_neg_q * loss_neg_q
# sum loss
# loss = loss_fcl + loss_vcl + loss_st_ed + loss_neg_ctx + loss_neg_q
# simi = torch.exp(10*(simi-0.7))
simi = simi
loss = ((loss_fcl + loss_vcl + loss_st_ed) * simi).mean() + loss_neg_ctx + loss_neg_q
return loss
def encode_query(self, query_feat, query_mask):
encoded_query = self.encode_input(query_feat, query_mask, self.query_input_proj, self.query_encoder,
self.query_pos_embed) # (N, Lq, D)
encoded_query = self.query_encoder1(encoded_query, query_mask.unsqueeze(1))
video_query, sub_query = self.get_modularized_queries(encoded_query, query_mask) # (N, D) * 2
return video_query, sub_query
def encode_context(self, video_feat, video_mask, sub_feat, sub_mask, return_mid_output=False):
# encoding video and subtitle features, respectively
encoded_video_feat = self.encode_input(video_feat, video_mask, self.video_input_proj, self.video_encoder1,
self.ctx_pos_embed)
encoded_sub_feat = self.encode_input(sub_feat, sub_mask, self.sub_input_proj, self.sub_encoder1,
self.ctx_pos_embed)
# cross encoding subtitle features
x_encoded_video_feat = self.cross_context_encoder(encoded_video_feat, video_mask, encoded_sub_feat, sub_mask,
self.video_cross_att, self.video_cross_layernorm) # (N, L, D)
x_encoded_video_feat_ = self.video_encoder2(x_encoded_video_feat, video_mask.unsqueeze(1))
# cross encoding video features
x_encoded_sub_feat = self.cross_context_encoder(encoded_sub_feat, sub_mask, encoded_video_feat, video_mask,
self.sub_cross_att, self.sub_cross_layernorm) # (N, L, D)
x_encoded_sub_feat_ = self.sub_encoder2(x_encoded_sub_feat, sub_mask.unsqueeze(1))
# additional self encoding process
x_encoded_video_feat = self.video_encoder3(x_encoded_video_feat_, video_mask.unsqueeze(1))
x_encoded_sub_feat = self.sub_encoder3(x_encoded_sub_feat_, sub_mask.unsqueeze(1))
if return_mid_output:
return (encoded_video_feat, encoded_sub_feat, x_encoded_video_feat_, x_encoded_sub_feat_,
x_encoded_video_feat, x_encoded_sub_feat)
else:
return x_encoded_video_feat, x_encoded_sub_feat
@staticmethod
def cross_context_encoder(main_context_feat, main_context_mask, side_context_feat, side_context_mask,
cross_att_layer, norm_layer):
"""
Args:
main_context_feat: (N, Lq, D)
main_context_mask: (N, Lq)
side_context_feat: (N, Lk, D)
side_context_mask: (N, Lk)
cross_att_layer: cross attention layer
norm_layer: layer norm layer
"""
cross_mask = torch.einsum("bm,bn->bmn", main_context_mask, side_context_mask) # (N, Lq, Lk)
cross_out = cross_att_layer(main_context_feat, side_context_feat, side_context_feat, cross_mask) # (N, Lq, D)
residual_out = norm_layer(cross_out + main_context_feat)
return residual_out
@staticmethod
def encode_input(feat, mask, input_proj_layer, encoder_layer, pos_embed_layer):
"""
Args:
feat: (N, L, D_input), torch.float32
mask: (N, L), torch.float32, with 1 indicates valid query, 0 indicates mask
input_proj_layer: down project input
encoder_layer: encoder layer
pos_embed_layer: positional embedding layer
"""
feat = input_proj_layer(feat)
feat = pos_embed_layer(feat)
mask = mask.unsqueeze(1) # (N, 1, L), torch.FloatTensor
feat = encoder_layer(feat, mask) # (N, L, D_hidden)
return feat
def get_modularized_queries(self, encoded_query, query_mask, return_modular_att=False):
"""
Args:
encoded_query: (N, L, D)
query_mask: (N, L)
return_modular_att: bool
"""
modular_attention_scores = self.modular_vector_mapping(encoded_query) # (N, L, 2 or 1)
modular_attention_scores = F.softmax(mask_logits(modular_attention_scores, query_mask.unsqueeze(2)), dim=1)
modular_queries = torch.einsum("blm,bld->bmd", modular_attention_scores, encoded_query) # (N, 2 or 1, D)
if return_modular_att:
assert modular_queries.shape[1] == 2
return modular_queries[:, 0], modular_queries[:, 1], modular_attention_scores
else:
assert modular_queries.shape[1] == 2
return modular_queries[:, 0], modular_queries[:, 1] # (N, D) * 2
@staticmethod
def get_video_level_scores(modularied_query, context_feat, context_mask):
""" Calculate video2query scores for each pair of video and query inside the batch.
Args:
modularied_query: (N, D)
context_feat: (N, L, D), output of the first transformer encoder layer
context_mask: (N, L)
Returns:
context_query_scores: (N, N) score of each query w.r.t. each video inside the batch,
diagonal positions are positive. used to get negative samples.
"""
modularied_query = F.normalize(modularied_query, dim=-1)
context_feat = F.normalize(context_feat, dim=-1)
query_context_scores = torch.einsum("md,nld->mln", modularied_query, context_feat) # (N, L, N)
context_mask = context_mask.transpose(0, 1).unsqueeze(0) # (1, L, N)
query_context_scores = mask_logits(query_context_scores, context_mask) # (N, L, N)
query_context_scores, _ = torch.max(query_context_scores, dim=1) # (N, N) diagonal positions are positive pairs
return query_context_scores
@staticmethod
def get_unnormalized_video_level_scores(modularied_query, context_feat, context_mask):
""" Calculate video2query scores for each pair of video and query inside the batch.
Args:
modularied_query: (N, D)
context_feat: (N, L, D), output of the first transformer encoder layer
context_mask: (N, L)
Returns:
context_query_scores: (N, N) score of each query w.r.t. each video inside the batch,
diagonal positions are positive. used to get negative samples.
"""
query_context_scores = torch.einsum("md,nld->mln", modularied_query, context_feat) # (N, L, N)
context_mask = context_mask.transpose(0, 1).unsqueeze(0) # (1, L, N)
query_context_scores = mask_logits(query_context_scores, context_mask) # (N, L, N)
return query_context_scores
def get_merged_score(self, video_query, video_feat, sub_query, sub_feat, cross=False):
video_query = self.video_query_linear(video_query)
sub_query = self.sub_query_linear(sub_query)
if cross:
video_similarity = torch.einsum("md,nld->mnl", video_query, video_feat)
sub_similarity = torch.einsum("md,nld->mnl", sub_query, sub_feat)
similarity = (video_similarity + sub_similarity) / 2 # (Nq, Nv, L) from query to all videos.
else:
video_similarity = torch.einsum("bd,bld->bl", video_query, video_feat) # (N, L)
sub_similarity = torch.einsum("bd,bld->bl", sub_query, sub_feat) # (N, L)
similarity = (video_similarity + sub_similarity) / 2
return similarity
def get_merged_st_ed_prob(self, similarity, context_mask, cross=False):
if cross:
n_q, n_c, length = similarity.shape
similarity = similarity.view(n_q * n_c, 1, length)
st_prob = self.merged_st_predictor(similarity).view(n_q, n_c, length) # (Nq, Nv, L)
ed_prob = self.merged_ed_predictor(similarity).view(n_q, n_c, length) # (Nq, Nv, L)
else:
st_prob = self.merged_st_predictor(similarity.unsqueeze(1)).squeeze() # (N, L)
ed_prob = self.merged_ed_predictor(similarity.unsqueeze(1)).squeeze() # (N, L)
st_prob = mask_logits(st_prob, context_mask) # (N, L)
ed_prob = mask_logits(ed_prob, context_mask)
return st_prob, ed_prob
def get_pred_from_raw_query(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, cross=False,
return_query_feats=False):
"""
Args:
query_feat: (N, Lq, Dq)
query_mask: (N, Lq)
video_feat: (N, Lv, D) or None
video_mask: (N, Lv)
sub_feat: (N, Lv, D) or None
sub_mask: (N, Lv)
cross:
return_query_feats:
"""
video_query, sub_query = self.encode_query(query_feat, query_mask)
# get video-level retrieval scores
video_q2ctx_scores = self.get_video_level_scores(video_query, video_feat, video_mask)
sub_q2ctx_scores = self.get_video_level_scores(sub_query, sub_feat, sub_mask)
q2ctx_scores = (video_q2ctx_scores + sub_q2ctx_scores) / 2 # (N, N)
# compute start and end probs
similarity = self.get_merged_score(video_query, video_feat, sub_query, sub_feat, cross=cross)
st_prob, ed_prob = self.get_merged_st_ed_prob(similarity, video_mask, cross=cross)
if return_query_feats:
return video_query, sub_query, q2ctx_scores, st_prob, ed_prob
else:
return q2ctx_scores, st_prob, ed_prob # un-normalized masked probabilities!!!!!
def get_video_level_loss(self, query_context_scores):
""" ranking loss between (pos. query + pos. video) and (pos. query + neg. video) or (neg. query + pos. video)
Args:
query_context_scores: (N, N), cosine similarity [-1, 1],
Each row contains the scores between the query to each of the videos inside the batch.
"""
bsz = len(query_context_scores)
diagonal_indices = torch.arange(bsz).to(query_context_scores.device)
pos_scores = query_context_scores[diagonal_indices, diagonal_indices] # (N, )
query_context_scores_masked = copy.deepcopy(query_context_scores.data)
# impossibly large for cosine similarity, the copy is created as modifying the original will cause error
query_context_scores_masked[diagonal_indices, diagonal_indices] = 999
pos_query_neg_context_scores = self.get_neg_scores(query_context_scores, query_context_scores_masked)
neg_query_pos_context_scores = self.get_neg_scores(query_context_scores.transpose(0, 1),
query_context_scores_masked.transpose(0, 1))
loss_neg_ctx = self.get_ranking_loss(pos_scores, pos_query_neg_context_scores)
loss_neg_q = self.get_ranking_loss(pos_scores, neg_query_pos_context_scores)
return loss_neg_ctx, loss_neg_q
def get_neg_scores(self, scores, scores_masked):
"""
scores: (N, N), cosine similarity [-1, 1],
Each row are scores: query --> all videos. Transposed version: video --> all queries.
scores_masked: (N, N) the same as scores, except that the diagonal (positive) positions
are masked with a large value.
"""
bsz = len(scores)
batch_indices = torch.arange(bsz).to(scores.device)
_, sorted_scores_indices = torch.sort(scores_masked, descending=True, dim=1)
sample_min_idx = 1 # skip the masked positive
sample_max_idx = min(sample_min_idx + self.config.hard_pool_size, bsz) if self.config.use_hard_negative else bsz
# (N, )
sampled_neg_score_indices = sorted_scores_indices[batch_indices, torch.randint(sample_min_idx, sample_max_idx,
size=(bsz,)).to(scores.device)]
sampled_neg_scores = scores[batch_indices, sampled_neg_score_indices] # (N, )
return sampled_neg_scores
def get_ranking_loss(self, pos_score, neg_score):
""" Note here we encourage positive scores to be larger than negative scores.
Args:
pos_score: (N, ), torch.float32
neg_score: (N, ), torch.float32
"""
if self.config.ranking_loss_type == "hinge": # max(0, m + S_neg - S_pos)
return torch.clamp(self.config.margin + neg_score - pos_score, min=0).sum() / len(pos_score)
elif self.config.ranking_loss_type == "lse": # log[1 + exp(S_neg - S_pos)]
return torch.log1p(torch.exp(neg_score - pos_score)).sum() / len(pos_score)
else:
raise NotImplementedError("Only support 'hinge' and 'lse'")
def mask_logits(target, mask):
return target * mask + (1 - mask) * (-1e10)