|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch optimization for BERT model.""" |
|
|
|
import math |
|
import torch |
|
from torch.optim import Optimizer |
|
from torch.optim.optimizer import required |
|
from torch.nn.utils import clip_grad_norm_ |
|
import logging |
|
import abc |
|
import sys |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
if sys.version_info >= (3, 4): |
|
ABC = abc.ABC |
|
else: |
|
ABC = abc.ABCMeta('ABC', (), {}) |
|
|
|
|
|
class _LRSchedule(ABC): |
|
""" Parent of all LRSchedules here. """ |
|
warn_t_total = False |
|
|
|
def __init__(self, warmup=0.002, t_total=-1, **kw): |
|
""" |
|
:param warmup: what fraction of t_total steps will be used for linear warmup |
|
:param t_total: how many training steps (updates) are planned |
|
:param kw: |
|
""" |
|
super(_LRSchedule, self).__init__(**kw) |
|
if t_total < 0: |
|
logger.warning("t_total value of {} results in schedule not being applied".format(t_total)) |
|
if not 0.0 <= warmup < 1.0 and not warmup == -1: |
|
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) |
|
warmup = max(warmup, 0.) |
|
self.warmup, self.t_total = float(warmup), float(t_total) |
|
self.warned_for_t_total_at_progress = -1 |
|
|
|
def get_lr(self, step, nowarn=False): |
|
""" |
|
:param step: which of t_total steps we're on |
|
:param nowarn: set to True to suppress warning regarding training beyond specified 't_total' steps |
|
:return: learning rate multiplier for current update |
|
""" |
|
if self.t_total < 0: |
|
return 1. |
|
progress = float(step) / self.t_total |
|
ret = self.get_lr_(progress) |
|
|
|
if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress: |
|
logger.warning("Training beyond specified 't_total'. Learning rate multiplier set to {}. Please " |
|
"set 't_total' of {} correctly.".format(ret, self.__class__.__name__)) |
|
self.warned_for_t_total_at_progress = progress |
|
|
|
return ret |
|
|
|
@abc.abstractmethod |
|
def get_lr_(self, progress): |
|
""" |
|
:param progress: value between 0 and 1 (unless going beyond t_total steps) specifying training progress |
|
:return: learning rate multiplier for current update |
|
""" |
|
return 1. |
|
|
|
|
|
class ConstantLR(_LRSchedule): |
|
def get_lr_(self, progress): |
|
return 1. |
|
|
|
|
|
class WarmupCosineSchedule(_LRSchedule): |
|
""" |
|
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. |
|
Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve. |
|
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. |
|
""" |
|
warn_t_total = True |
|
|
|
def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw): |
|
""" |
|
:param warmup: see LRSchedule |
|
:param t_total: see LRSchedule |
|
:param cycles: number of cycles. Default: 0.5, corresponding to cosine decay from 1. |
|
at progress==warmup and 0 at progress==1. |
|
:param kw: |
|
""" |
|
super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw) |
|
self.cycles = cycles |
|
|
|
def get_lr_(self, progress): |
|
if progress < self.warmup: |
|
return progress / self.warmup |
|
else: |
|
progress = (progress - self.warmup) / (1 - self.warmup) |
|
return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress)) |
|
|
|
|
|
class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule): |
|
""" |
|
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. |
|
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying |
|
learning rate (with hard restarts). |
|
""" |
|
def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): |
|
super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) |
|
assert(cycles >= 1.) |
|
|
|
def get_lr_(self, progress): |
|
if progress < self.warmup: |
|
return progress / self.warmup |
|
else: |
|
progress = (progress - self.warmup) / (1 - self.warmup) |
|
ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1))) |
|
return ret |
|
|
|
|
|
class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule): |
|
""" |
|
All training progress is divided in `cycles` (default=1.) parts of equal length. |
|
Every part follows a schedule with the first `warmup` fraction of training steps linearly increasing from 0. to 1., |
|
followed by a learning rate decreasing from 1. to 0. following a cosine curve. |
|
""" |
|
def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): |
|
assert(warmup * cycles < 1.) |
|
warmup = warmup * cycles if warmup >= 0 else warmup |
|
super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, |
|
**kw) |
|
|
|
def get_lr_(self, progress): |
|
progress = progress * self.cycles % 1. |
|
if progress < self.warmup: |
|
return progress / self.warmup |
|
else: |
|
progress = (progress - self.warmup) / (1 - self.warmup) |
|
ret = 0.5 * (1. + math.cos(math.pi * progress)) |
|
return ret |
|
|
|
|
|
class WarmupConstantSchedule(_LRSchedule): |
|
""" |
|
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. |
|
Keeps learning rate equal to 1. after warmup. |
|
""" |
|
def get_lr_(self, progress): |
|
if progress < self.warmup: |
|
return progress / self.warmup |
|
return 1. |
|
|
|
|
|
class WarmupLinearSchedule(_LRSchedule): |
|
""" |
|
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. |
|
Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps. |
|
""" |
|
warn_t_total = True |
|
|
|
def get_lr_(self, progress): |
|
if progress < self.warmup: |
|
return progress / self.warmup |
|
return max((progress - 1.) / (self.warmup - 1.), 0.) |
|
|
|
|
|
SCHEDULES = { |
|
None: ConstantLR, |
|
"none": ConstantLR, |
|
"warmup_cosine": WarmupCosineSchedule, |
|
"warmup_constant": WarmupConstantSchedule, |
|
"warmup_linear": WarmupLinearSchedule |
|
} |
|
|
|
|
|
class EMA(object): |
|
""" Exponential Moving Average for model parameters. |
|
references: |
|
[1] https://github.com/BangLiu/QANet-PyTorch/blob/master/model/modules/ema.py |
|
[2] https://github.com/hengruo/QANet-pytorch/blob/e2de07cd2c711d525f5ffee35c3764335d4b501d/main.py""" |
|
def __init__(self, decay): |
|
self.decay = decay |
|
self.shadow = {} |
|
self.original = {} |
|
|
|
def register(self, name, val): |
|
self.shadow[name] = val.clone() |
|
|
|
def __call__(self, model, step): |
|
decay = min(self.decay, (1 + step) / (10.0 + step)) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
assert name in self.shadow |
|
new_average = \ |
|
(1.0 - decay) * param.data + decay * self.shadow[name] |
|
self.shadow[name] = new_average.clone() |
|
|
|
def assign(self, model): |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
assert name in self.shadow |
|
self.original[name] = param.data.clone() |
|
param.data = self.shadow[name] |
|
|
|
def resume(self, model): |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
assert name in self.shadow |
|
param.data = self.original[name] |
|
|
|
|
|
class BertAdam(Optimizer): |
|
"""Implements BERT version of Adam algorithm with weight decay fix. |
|
Params: |
|
lr: learning rate |
|
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 |
|
t_total: total number of training steps for the learning |
|
rate schedule, -1 means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1 |
|
schedule: schedule to use for the warmup (see above). |
|
Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object |
|
(see below). |
|
If `None` or `'none'`, learning rate is always kept constant. |
|
Default : `'warmup_linear'` |
|
b1: Adams b1. Default: 0.9 |
|
b2: Adams b2. Default: 0.999 |
|
e: Adams epsilon. Default: 1e-6 |
|
weight_decay: Weight decay. Default: 0.01 |
|
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 |
|
""" |
|
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', |
|
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs): |
|
if lr is not required and lr < 0.0: |
|
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) |
|
if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES: |
|
raise ValueError("Invalid schedule parameter: {}".format(schedule)) |
|
if not 0.0 <= b1 < 1.0: |
|
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) |
|
if not 0.0 <= b2 < 1.0: |
|
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) |
|
if not e >= 0.0: |
|
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) |
|
|
|
if not isinstance(schedule, _LRSchedule): |
|
schedule_type = SCHEDULES[schedule] |
|
schedule = schedule_type(warmup=warmup, t_total=t_total) |
|
else: |
|
if warmup != -1 or t_total != -1: |
|
logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is " |
|
"provided as schedule. Please specify custom warmup and t_total in _LRSchedule object.") |
|
defaults = dict(lr=lr, schedule=schedule, |
|
b1=b1, b2=b2, e=e, weight_decay=weight_decay, |
|
max_grad_norm=max_grad_norm) |
|
super(BertAdam, self).__init__(params, defaults) |
|
|
|
def get_lr(self): |
|
lr = [] |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
state = self.state[p] |
|
if len(state) == 0: |
|
return [0] |
|
lr_scheduled = group['lr'] |
|
lr_scheduled *= group['schedule'].get_lr(state['step']) |
|
lr.append(lr_scheduled) |
|
return lr |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['next_m'] = torch.zeros_like(p.data) |
|
|
|
state['next_v'] = torch.zeros_like(p.data) |
|
|
|
next_m, next_v = state['next_m'], state['next_v'] |
|
beta1, beta2 = group['b1'], group['b2'] |
|
|
|
|
|
if group['max_grad_norm'] > 0: |
|
clip_grad_norm_(p, group['max_grad_norm']) |
|
|
|
|
|
|
|
next_m.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
next_v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
update = next_m / (next_v.sqrt() + group['e']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if group['weight_decay'] > 0.0: |
|
update += group['weight_decay'] * p.data |
|
|
|
lr_scheduled = group['lr'] |
|
lr_scheduled *= group['schedule'].get_lr(state['step']) |
|
|
|
update_with_lr = lr_scheduled * update |
|
p.data.add_(-update_with_lr) |
|
|
|
state['step'] += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
return loss |
|
|