|
--- |
|
language: |
|
- pl |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Medium PL |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: pl |
|
split: test |
|
args: pl |
|
metrics: |
|
- type: wer |
|
value: 8.71 |
|
name: WER |
|
- type: wer_without_norm |
|
value: 22.0 |
|
name: WER unnormalized |
|
- type: cer |
|
value: 2.41 |
|
name: CER |
|
- type: mer |
|
value: 8.65 |
|
name: MER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: facebook/voxpopuli |
|
type: facebook/voxpopuli |
|
config: pl |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 11.99 |
|
name: WER |
|
- type: wer_without_norm |
|
value: 30.9 |
|
name: WER unnormalized |
|
- type: cer |
|
value: 6.54 |
|
name: CER |
|
- type: mer |
|
value: 11.68 |
|
name: MER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: pl_pl |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 10.89 |
|
name: WER |
|
- type: wer_without_norm |
|
value: 30.7 |
|
name: WER unnormalized |
|
- type: cer |
|
value: 4.04 |
|
name: CER |
|
- type: mer |
|
value: 10.8 |
|
name: MER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium PL |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 and the FLEURS datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3947 |
|
- Wer: 8.6872 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.0805 | 0.48 | 500 | 0.2556 | 10.4888 | |
|
| 0.0685 | 0.96 | 1000 | 0.2462 | 10.7608 | |
|
| 0.0356 | 1.45 | 1500 | 0.2561 | 9.6728 | |
|
| 0.0337 | 1.93 | 2000 | 0.2327 | 9.6459 | |
|
| 0.017 | 2.41 | 2500 | 0.2444 | 9.9464 | |
|
| 0.0179 | 2.9 | 3000 | 0.2554 | 9.6476 | |
|
| 0.0056 | 3.38 | 3500 | 0.3001 | 9.3638 | |
|
| 0.007 | 3.86 | 4000 | 0.2809 | 9.2245 | |
|
| 0.0033 | 4.34 | 4500 | 0.3235 | 9.3437 | |
|
| 0.0024 | 4.83 | 5000 | 0.3148 | 9.0633 | |
|
| 0.0008 | 5.31 | 5500 | 0.3416 | 9.0112 | |
|
| 0.0011 | 5.79 | 6000 | 0.3876 | 9.1858 | |
|
| 0.0004 | 6.27 | 6500 | 0.3745 | 8.7292 | |
|
| 0.0003 | 6.76 | 7000 | 0.3704 | 9.0314 | |
|
| 0.0003 | 7.24 | 7500 | 0.3929 | 8.6553 | |
|
| 0.0002 | 7.72 | 8000 | 0.3947 | 8.6872 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|