|
--- |
|
license: openrail++ |
|
--- |
|
This repository contains offset versions of https://huggingface.co/mhdang/dpo-sdxl-text2image-v1 and https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1. |
|
|
|
These can be added directly to any initialized UNet to inject DPO training into it. See the code below for usage (diffusers only.) |
|
|
|
```py |
|
def inject_dpo(unet: UNet2DConditionModel, dpo_path: str, strict: bool = False) -> None: |
|
""" |
|
Injects DPO weights directly into your UNet. |
|
|
|
Args: |
|
unet (`UNet2DConditionModel`) |
|
The initialized UNet from your pipeline. |
|
dpo_path (`str`) |
|
The path to the `.safetensors` file downloaded from https://huggingface.co/benjamin-paine/sd-dpo-offsets/. |
|
Make sure you're using the right file for the right base model. |
|
strict (`bool`, *optional*) |
|
Whether or not to raise errors when a weight cannot be applied. Defaults to false. |
|
""" |
|
from safetensors import safe_open |
|
with safe_open(dpo_offset_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
key_parts = key.split(".") |
|
current_layer = unet |
|
for key_part in key_parts[:-1]: |
|
current_layer = getattr(current_layer, key_part, None) |
|
if current_layer is None: |
|
break |
|
if current_layer is None: |
|
if strict: |
|
raise IOError(f"Couldn't find a layer to inject key {key} in.") |
|
continue |
|
layer_param = getattr(current_layer, key_parts[-1], None) |
|
if layer_param is None: |
|
if strict: |
|
raise IOError(f"Couldn't get weighht parameter for key {key}") |
|
layer_param.data += f.get_tensor(key) |
|
``` |
|
Now you can use this function like so: |
|
|
|
```py |
|
from diffusers import StableDiffusionPipeline |
|
import huggingface_hub |
|
import torch |
|
|
|
# load sdv15 pipeline |
|
model_id = "Lykon/dreamshaper-8" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
|
|
# download DPO offsets |
|
dpo_path = huggingface_hub.hf_hub_download("painebenjamin/sd-dpo-offsets", "sd_v15_unet_dpo_offset.safetensors") |
|
# inject |
|
inject_dpo(pipe.unet, dpo_path) |
|
|
|
# make image |
|
prompt = "Two cats playing chess on a tree branch" |
|
image = pipe(prompt, guidance_scale=7.5).images[0] |
|
image.save("cats_playing_chess.png") |
|
``` |
|
|
|
Or for XL: |
|
|
|
```py |
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
# load sdxl pipeline |
|
model_id = "Lykon/dreamshaper-xl-1-0" |
|
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16") |
|
|
|
# download DPO offsets |
|
dpo_path = huggingface_hub.hf_hub_download("painebenjamin/sd-dpo-offsets", "sd_xl_unet_dpo_offset.safetensors") |
|
# inject |
|
inject_dpo(pipe.unet, dpo_path) |
|
|
|
# make image |
|
prompt = "Two cats playing chess on a tree branch" |
|
image = pipe(prompt, guidance_scale=7.5).images[0] |
|
image.save("cats_playing_chess.png") |
|
``` |