metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: xtremedistil-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9265
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.926
verified: true
- name: Precision Macro
type: precision
value: 0.8855308537052737
verified: true
- name: Precision Micro
type: precision
value: 0.926
verified: true
- name: Precision Weighted
type: precision
value: 0.9281282413639949
verified: true
- name: Recall Macro
type: recall
value: 0.8969894921856228
verified: true
- name: Recall Micro
type: recall
value: 0.926
verified: true
- name: Recall Weighted
type: recall
value: 0.926
verified: true
- name: F1 Macro
type: f1
value: 0.8903400738742536
verified: true
- name: F1 Micro
type: f1
value: 0.926
verified: true
- name: F1 Weighted
type: f1
value: 0.9265018282649476
verified: true
- name: loss
type: loss
value: 0.2258329838514328
verified: true
xtremedistil-emotion
This model is a fine-tuned version of microsoft/xtremedistil-l6-h256-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.9265
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- num_epochs: 24
Training results
Epoch Training Loss Validation Loss Accuracy 1 No log 1.238589 0.609000 2 No log 0.934423 0.714000 3 No log 0.768701 0.742000 4 1.074800 0.638208 0.805500 5 1.074800 0.551363 0.851500 6 1.074800 0.476291 0.875500 7 1.074800 0.427313 0.883500 8 0.531500 0.392633 0.886000 9 0.531500 0.357979 0.892000 10 0.531500 0.330304 0.899500 11 0.531500 0.304529 0.907000 12 0.337200 0.287447 0.918000 13 0.337200 0.277067 0.921000 14 0.337200 0.259483 0.921000 15 0.337200 0.257564 0.916500 16 0.246200 0.241970 0.919500 17 0.246200 0.241537 0.921500 18 0.246200 0.235705 0.924500 19 0.246200 0.237325 0.920500 20 0.201400 0.229699 0.923500 21 0.201400 0.227426 0.923000 22 0.201400 0.228554 0.924000 23 0.201400 0.226941 0.925500 24 0.184300 0.225816 0.926500