bxleigh's picture
End of training
03beda8
|
raw
history blame
3.33 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan4
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.78

distilhubert-finetuned-gtzan4

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0945
  • Accuracy: 0.78

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.85 4 2.2991 0.06
2.2997 1.92 9 2.2668 0.28
2.2819 2.99 14 2.1877 0.33
2.2336 3.84 18 2.1023 0.47
2.1493 4.91 23 1.9895 0.52
2.0571 5.97 28 1.8745 0.51
1.9341 6.83 32 1.7838 0.57
1.8274 7.89 37 1.6784 0.64
1.724 8.96 42 1.5859 0.66
1.6407 9.81 46 1.5234 0.66
1.5593 10.88 51 1.4508 0.7
1.4735 11.95 56 1.3982 0.69
1.4185 12.8 60 1.3501 0.72
1.3613 13.87 65 1.3131 0.74
1.3099 14.93 70 1.2742 0.72
1.2762 16.0 75 1.2485 0.73
1.2762 16.85 79 1.2102 0.74
1.2379 17.92 84 1.1931 0.75
1.193 18.99 89 1.1647 0.75
1.1863 19.84 93 1.1488 0.77
1.1435 20.91 98 1.1349 0.78
1.1424 21.97 103 1.1166 0.79
1.0961 22.83 107 1.1025 0.78
1.0887 23.89 112 1.0993 0.78
1.0977 24.96 117 1.0952 0.78
1.0661 25.6 120 1.0945 0.78

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3