|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan4 |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.78 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan4 |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0945 |
|
- Accuracy: 0.78 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 192 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.85 | 4 | 2.2991 | 0.06 | |
|
| 2.2997 | 1.92 | 9 | 2.2668 | 0.28 | |
|
| 2.2819 | 2.99 | 14 | 2.1877 | 0.33 | |
|
| 2.2336 | 3.84 | 18 | 2.1023 | 0.47 | |
|
| 2.1493 | 4.91 | 23 | 1.9895 | 0.52 | |
|
| 2.0571 | 5.97 | 28 | 1.8745 | 0.51 | |
|
| 1.9341 | 6.83 | 32 | 1.7838 | 0.57 | |
|
| 1.8274 | 7.89 | 37 | 1.6784 | 0.64 | |
|
| 1.724 | 8.96 | 42 | 1.5859 | 0.66 | |
|
| 1.6407 | 9.81 | 46 | 1.5234 | 0.66 | |
|
| 1.5593 | 10.88 | 51 | 1.4508 | 0.7 | |
|
| 1.4735 | 11.95 | 56 | 1.3982 | 0.69 | |
|
| 1.4185 | 12.8 | 60 | 1.3501 | 0.72 | |
|
| 1.3613 | 13.87 | 65 | 1.3131 | 0.74 | |
|
| 1.3099 | 14.93 | 70 | 1.2742 | 0.72 | |
|
| 1.2762 | 16.0 | 75 | 1.2485 | 0.73 | |
|
| 1.2762 | 16.85 | 79 | 1.2102 | 0.74 | |
|
| 1.2379 | 17.92 | 84 | 1.1931 | 0.75 | |
|
| 1.193 | 18.99 | 89 | 1.1647 | 0.75 | |
|
| 1.1863 | 19.84 | 93 | 1.1488 | 0.77 | |
|
| 1.1435 | 20.91 | 98 | 1.1349 | 0.78 | |
|
| 1.1424 | 21.97 | 103 | 1.1166 | 0.79 | |
|
| 1.0961 | 22.83 | 107 | 1.1025 | 0.78 | |
|
| 1.0887 | 23.89 | 112 | 1.0993 | 0.78 | |
|
| 1.0977 | 24.96 | 117 | 1.0952 | 0.78 | |
|
| 1.0661 | 25.6 | 120 | 1.0945 | 0.78 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|