language: | |
- en | |
license: apache-2.0 | |
tags: | |
- hearing loss | |
- challenge | |
- signal processing | |
- source separation | |
- audio | |
- audio-to-audio | |
- Causal | |
# Cadenza Challenge: CAD2-Task1 | |
A Causal Clarinet/Others separation model for the CAD2-Task2 baseline system. | |
* Architecture: ConvTasNet (Kaituo XU) with multichannel support (Alexandre Defossez). | |
* Parameters: | |
* B: 256 | |
* C: 2 | |
* H: 512 | |
* L: 20 | |
* N: 256 | |
* P: 3 | |
* R: 3 | |
* X: 8 | |
* audio_channels: 2 | |
* causal: true | |
* mask_nonlinear: relu | |
* norm_type: cLN | |
* training: | |
* sample_rate: 44100 | |
* samples_per_track: 64 | |
* segment: 5.0 | |
* aggregate: 2 | |
* batch_size: 4 | |
* early_stop: true | |
* epochs: 200 | |
## Dataset | |
The model was trained using EnsembleSet and CadenzaWoodwind datasets. | |
## How to use | |
``` | |
from tasnet import ConvTasNetStereo | |
model = ConvTasNetStereo.from_pretrained( | |
"cadenzachallenge/ConvTasNet_Clarinet_Causal" | |
).cpu() | |
``` | |