metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9409677419354838
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8678181818181818
verified: true
- name: Precision Macro
type: precision
value: 0.8709070335541537
verified: true
- name: Precision Micro
type: precision
value: 0.8678181818181818
verified: true
- name: Precision Weighted
type: precision
value: 0.8873756372468106
verified: true
- name: Recall Macro
type: recall
value: 0.943794701986755
verified: true
- name: Recall Micro
type: recall
value: 0.8678181818181818
verified: true
- name: Recall Weighted
type: recall
value: 0.8678181818181818
verified: true
- name: F1 Macro
type: f1
value: 0.9010603026068839
verified: true
- name: F1 Micro
type: f1
value: 0.8678181818181818
verified: true
- name: F1 Weighted
type: f1
value: 0.8602590146783372
verified: true
- name: loss
type: loss
value: 0.8631454110145569
verified: true
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1004
- Accuracy: 0.9410
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9037 | 1.0 | 318 | 0.5745 | 0.7326 |
0.4486 | 2.0 | 636 | 0.2866 | 0.8819 |
0.2537 | 3.0 | 954 | 0.1794 | 0.9210 |
0.1762 | 4.0 | 1272 | 0.1387 | 0.9294 |
0.1419 | 5.0 | 1590 | 0.1210 | 0.9358 |
0.1247 | 6.0 | 1908 | 0.1119 | 0.9413 |
0.1138 | 7.0 | 2226 | 0.1067 | 0.9387 |
0.1078 | 8.0 | 2544 | 0.1026 | 0.9423 |
0.1043 | 9.0 | 2862 | 0.1010 | 0.9413 |
0.102 | 10.0 | 3180 | 0.1004 | 0.9410 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.10.3