hc-mistral-alpaca / README.md
caldana's picture
End of training
c0c47d6 verified
|
raw
history blame
3.81 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: hc-mistral-alpaca
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

lora_fan_in_fan_out: false
data_seed: 49
seed: 49

datasets:
  - path: sample_data/alpaca_synth_queries.jsonl
    type: sharegpt
    conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-out
hub_model_id: caldana/hc-mistral-alpaca

adapter: qlora
lora_model_dir:

sequence_len: 896
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: 
wandb_entity: 

gradient_accumulation_steps: 4
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
save_total_limit: 12

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 20
evals_per_epoch: 3
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 6
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
save_safetensors: true

hc-mistral-alpaca

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 49
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.334 0.6667 1 1.2849
1.3476 1.3333 2 1.2762
1.2977 2.0 3 1.2492
1.3157 2.6667 4 1.1859
1.1755 3.3333 5 1.0709
1.1377 4.0 6 0.9092
0.9404 4.6667 7 0.7201
0.7404 5.3333 8 0.5605
0.5547 6.0 9 0.4305
0.4057 6.6667 10 0.3253

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1