metadata
library_name: transformers
license: cc-by-4.0
base_model: l3cube-pune/indic-sentence-bert-nli
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: indic-sentence-bert-nli-abusive-comments-ta
results: []
indic-sentence-bert-nli-abusive-comments-ta
This model is a fine-tuned version of l3cube-pune/indic-sentence-bert-nli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3335
- Accuracy: 0.6148
- Precision: 0.0769
- Recall: 0.125
- F1: 0.0952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.3249 | 1.0 | 186 | 1.3335 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.3468 | 2.0 | 372 | 1.3318 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.3534 | 3.0 | 558 | 1.3310 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.1991 | 4.0 | 744 | 1.3412 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.3534 | 5.0 | 930 | 1.3315 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.4725 | 6.0 | 1116 | 1.3313 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.3451 | 7.0 | 1302 | 1.3314 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.315 | 8.0 | 1488 | 1.3315 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.3157 | 9.0 | 1674 | 1.3324 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
1.2015 | 10.0 | 1860 | 1.3319 | 0.6176 | 0.0772 | 0.125 | 0.0955 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0