File size: 4,507 Bytes
558ea70
 
 
 
 
 
 
bb2e2b4
558ea70
 
 
 
 
 
 
 
 
 
bb2e2b4
558ea70
 
 
 
 
bb2e2b4
558ea70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2e2b4
 
 
558ea70
 
bb2e2b4
558ea70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2e2b4
 
558ea70
 
bb2e2b4
558ea70
 
 
 
 
 
 
bb2e2b4
558ea70
 
 
 
bb2e2b4
558ea70
 
 
 
bb2e2b4
558ea70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v2-english-2k-steps
  results: []
datasets:
- mozilla-foundation/common_voice_11_0
language:
- ar
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v2-english-2k-steps

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Arabic CommonVoice dataset (v11).

## Model description

This model is finetuned for 2000 steps for research purposes which means that the transcriptions might not be that satisfactory for users.

## Training and evaluation data

- Training Data: CommonVoice (v11) train split
- Validation Data: CommonVoice (v11) Validation split
- Test Data: CommonVoice (v11) Test split

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 50
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Transcription:

```python
from datasets import load_dataset, Audio
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# load the model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps").to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")

# load the dataset
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="validation", streaming=True)
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000))
sample = next(iter(commonvoice_eval))["audio"]

# features and generate token ids
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)

# decode
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]

print("Transcription:", transcription)
```

### Evaluation:

Evaluates this model on `mozilla-foundation/common_voice_11_0` test split.

```python
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate
import torch
import re
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# metric
wer_metric = evaluate.load("wer")

# model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps")

# dataset
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", ) #cache_dir=args.cache_dir
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))

#for debuggings: it gets two examples
#dataset = dataset.shard(num_shards=10000, index=0)
#print(dataset)
    
def normalize(batch):
  batch["gold_text"] = whisper_norm(batch['sentence'])
  return batch

def map_wer(batch):
  model.to(device)
  forced_decoder_ids = processor.get_decoder_prompt_ids(language = "en", task = "transcribe")
  inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features
  with torch.no_grad():
    generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids)
    transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
  batch["predicted_text"] = whisper_norm(transcription)
  return batch

# process GOLD text
processed_dataset = dataset.map(normalize)
# get predictions
predicted = processed_dataset.map(map_wer)

# word error rate
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text'])
wer = round(100 * wer, 2)
print("WER:", wer)
```

### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2