|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large-v2-english-2k-steps |
|
results: [] |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
language: |
|
- ar |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v2-english-2k-steps |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the English CommonVoice dataset (v11). |
|
|
|
## Model description |
|
|
|
This model is finetuned for 2000 steps for research purposes which means that the transcriptions might not be that satisfactory for users. |
|
|
|
## Training and evaluation data |
|
|
|
- Training Data: CommonVoice (v11) train split |
|
- Validation Data: CommonVoice (v11) Validation split |
|
- Test Data: CommonVoice (v11) Test split |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 50 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Transcription: |
|
|
|
```python |
|
from datasets import load_dataset, Audio |
|
import torch |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
# device |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# load the model |
|
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps") |
|
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps").to(device) |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe") |
|
|
|
# load the dataset |
|
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="validation", streaming=True) |
|
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000)) |
|
sample = next(iter(commonvoice_eval))["audio"] |
|
|
|
# features and generate token ids |
|
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features |
|
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids) |
|
|
|
# decode |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
print("Transcription:", transcription) |
|
``` |
|
|
|
### Evaluation: |
|
|
|
Evaluates this model on `mozilla-foundation/common_voice_11_0` test split. |
|
|
|
```python |
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer |
|
from datasets import load_dataset, Audio |
|
import evaluate |
|
import torch |
|
import re |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
# device |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# metric |
|
wer_metric = evaluate.load("wer") |
|
|
|
# model |
|
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps") |
|
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-english-2k-steps") |
|
|
|
# dataset |
|
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", ) #cache_dir=args.cache_dir |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
|
|
#for debuggings: it gets two examples |
|
#dataset = dataset.shard(num_shards=10000, index=0) |
|
#print(dataset) |
|
|
|
def normalize(batch): |
|
batch["gold_text"] = whisper_norm(batch['sentence']) |
|
return batch |
|
|
|
def map_wer(batch): |
|
model.to(device) |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language = "en", task = "transcribe") |
|
inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features |
|
with torch.no_grad(): |
|
generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids) |
|
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
batch["predicted_text"] = whisper_norm(transcription) |
|
return batch |
|
|
|
# process GOLD text |
|
processed_dataset = dataset.map(normalize) |
|
# get predictions |
|
predicted = processed_dataset.map(map_wer) |
|
|
|
# word error rate |
|
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text']) |
|
wer = round(100 * wer, 2) |
|
print("WER:", wer) |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |