comodoro's picture
Librarian Bot: Add base_model information to model (#2)
73e2b90
metadata
language:
  - cs
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - hf-asr-leaderboard
  - mozilla-foundation/common_voice_8_0
  - robust-speech-event
  - xlsr-fine-tuning-week
datasets:
  - mozilla-foundation/common_voice_8_0
  - ovm
  - pscr
  - vystadial2016
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: Czech comodoro Wav2Vec2 XLSR 300M 250h data
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: cs
        metrics:
          - type: wer
            value: 7.3
            name: Test WER
          - type: cer
            value: 2.1
            name: Test CER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: cs
        metrics:
          - type: wer
            value: 43.44
            name: Test WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: cs
        metrics:
          - type: wer
            value: 38.5
            name: Test WER

Czech wav2vec2-xls-r-300m-cs-250

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset as well as other datasets listed below.

It achieves the following results on the evaluation set:

  • Loss: 0.1271
  • Wer: 0.1475
  • Cer: 0.0329

The eval.py script results using a LM are:

  • WER: 0.07274312090176113
  • CER: 0.021207369275558875

Model description

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated using the attached eval.py script:

python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-250 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs

Training and evaluation data

The Common Voice 8.0 train and validation datasets were used for training, as well as the following datasets:

  • Šmídl, Luboš and Pražák, Aleš, 2013, OVM – Otázky Václava Moravce, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-000D-EC98-3.

  • Pražák, Aleš and Šmídl, Luboš, 2012, Czech Parliament Meetings, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4.

  • Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.4203 0.16 800 3.3148 1.0 1.0
2.8151 0.32 1600 0.8508 0.8938 0.2345
0.9411 0.48 2400 0.3335 0.3723 0.0847
0.7408 0.64 3200 0.2573 0.2840 0.0642
0.6516 0.8 4000 0.2365 0.2581 0.0595
0.6242 0.96 4800 0.2039 0.2433 0.0541
0.5754 1.12 5600 0.1832 0.2156 0.0482
0.5626 1.28 6400 0.1827 0.2091 0.0463
0.5342 1.44 7200 0.1744 0.2033 0.0468
0.4965 1.6 8000 0.1705 0.1963 0.0444
0.5047 1.76 8800 0.1604 0.1889 0.0422
0.4814 1.92 9600 0.1604 0.1827 0.0411
0.4471 2.09 10400 0.1566 0.1822 0.0406
0.4509 2.25 11200 0.1619 0.1853 0.0432
0.4415 2.41 12000 0.1513 0.1764 0.0397
0.4313 2.57 12800 0.1515 0.1739 0.0392
0.4163 2.73 13600 0.1445 0.1695 0.0377
0.4142 2.89 14400 0.1478 0.1699 0.0385
0.4184 3.05 15200 0.1430 0.1669 0.0376
0.3886 3.21 16000 0.1433 0.1644 0.0374
0.3795 3.37 16800 0.1426 0.1648 0.0373
0.3859 3.53 17600 0.1357 0.1604 0.0361
0.3762 3.69 18400 0.1344 0.1558 0.0349
0.384 3.85 19200 0.1379 0.1576 0.0359
0.3762 4.01 20000 0.1344 0.1539 0.0346
0.3559 4.17 20800 0.1339 0.1525 0.0351
0.3683 4.33 21600 0.1315 0.1518 0.0342
0.3572 4.49 22400 0.1307 0.1507 0.0342
0.3494 4.65 23200 0.1294 0.1491 0.0335
0.3476 4.81 24000 0.1287 0.1491 0.0336
0.3475 4.97 24800 0.1271 0.1475 0.0329

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0