|
--- |
|
language: |
|
- cs |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
- xlsr-fine-tuning-week |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
- ovm |
|
- pscr |
|
- vystadial2016 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
model-index: |
|
- name: Czech comodoro Wav2Vec2 XLSR 300M 250h data |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: cs |
|
metrics: |
|
- type: wer |
|
value: 7.3 |
|
name: Test WER |
|
- type: cer |
|
value: 2.1 |
|
name: Test CER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: cs |
|
metrics: |
|
- type: wer |
|
value: 43.44 |
|
name: Test WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: cs |
|
metrics: |
|
- type: wer |
|
value: 38.5 |
|
name: Test WER |
|
--- |
|
|
|
# Czech wav2vec2-xls-r-300m-cs-250 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset as well as other datasets listed below. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1271 |
|
- Wer: 0.1475 |
|
- Cer: 0.0329 |
|
|
|
The `eval.py` script results using a LM are: |
|
- WER: 0.07274312090176113 |
|
- CER: 0.021207369275558875 |
|
|
|
## Model description |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250") |
|
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset[:2]["sentence"]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated using the attached `eval.py` script: |
|
``` |
|
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-250 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
The Common Voice 8.0 `train` and `validation` datasets were used for training, as well as the following datasets: |
|
|
|
- Šmídl, Luboš and Pražák, Aleš, 2013, OVM – Otázky Václava Moravce, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-000D-EC98-3. |
|
|
|
- Pražák, Aleš and Šmídl, Luboš, 2012, Czech Parliament Meetings, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4. |
|
|
|
- Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 800 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 3.4203 | 0.16 | 800 | 3.3148 | 1.0 | 1.0 | |
|
| 2.8151 | 0.32 | 1600 | 0.8508 | 0.8938 | 0.2345 | |
|
| 0.9411 | 0.48 | 2400 | 0.3335 | 0.3723 | 0.0847 | |
|
| 0.7408 | 0.64 | 3200 | 0.2573 | 0.2840 | 0.0642 | |
|
| 0.6516 | 0.8 | 4000 | 0.2365 | 0.2581 | 0.0595 | |
|
| 0.6242 | 0.96 | 4800 | 0.2039 | 0.2433 | 0.0541 | |
|
| 0.5754 | 1.12 | 5600 | 0.1832 | 0.2156 | 0.0482 | |
|
| 0.5626 | 1.28 | 6400 | 0.1827 | 0.2091 | 0.0463 | |
|
| 0.5342 | 1.44 | 7200 | 0.1744 | 0.2033 | 0.0468 | |
|
| 0.4965 | 1.6 | 8000 | 0.1705 | 0.1963 | 0.0444 | |
|
| 0.5047 | 1.76 | 8800 | 0.1604 | 0.1889 | 0.0422 | |
|
| 0.4814 | 1.92 | 9600 | 0.1604 | 0.1827 | 0.0411 | |
|
| 0.4471 | 2.09 | 10400 | 0.1566 | 0.1822 | 0.0406 | |
|
| 0.4509 | 2.25 | 11200 | 0.1619 | 0.1853 | 0.0432 | |
|
| 0.4415 | 2.41 | 12000 | 0.1513 | 0.1764 | 0.0397 | |
|
| 0.4313 | 2.57 | 12800 | 0.1515 | 0.1739 | 0.0392 | |
|
| 0.4163 | 2.73 | 13600 | 0.1445 | 0.1695 | 0.0377 | |
|
| 0.4142 | 2.89 | 14400 | 0.1478 | 0.1699 | 0.0385 | |
|
| 0.4184 | 3.05 | 15200 | 0.1430 | 0.1669 | 0.0376 | |
|
| 0.3886 | 3.21 | 16000 | 0.1433 | 0.1644 | 0.0374 | |
|
| 0.3795 | 3.37 | 16800 | 0.1426 | 0.1648 | 0.0373 | |
|
| 0.3859 | 3.53 | 17600 | 0.1357 | 0.1604 | 0.0361 | |
|
| 0.3762 | 3.69 | 18400 | 0.1344 | 0.1558 | 0.0349 | |
|
| 0.384 | 3.85 | 19200 | 0.1379 | 0.1576 | 0.0359 | |
|
| 0.3762 | 4.01 | 20000 | 0.1344 | 0.1539 | 0.0346 | |
|
| 0.3559 | 4.17 | 20800 | 0.1339 | 0.1525 | 0.0351 | |
|
| 0.3683 | 4.33 | 21600 | 0.1315 | 0.1518 | 0.0342 | |
|
| 0.3572 | 4.49 | 22400 | 0.1307 | 0.1507 | 0.0342 | |
|
| 0.3494 | 4.65 | 23200 | 0.1294 | 0.1491 | 0.0335 | |
|
| 0.3476 | 4.81 | 24000 | 0.1287 | 0.1491 | 0.0336 | |
|
| 0.3475 | 4.97 | 24800 | 0.1271 | 0.1475 | 0.0329 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|