metadata
language:
- hsb
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- xlsr-fine-tuning-week
- hf-asr-leaderboard
datasets:
- common_voice
model-index:
- name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: hsb
metrics:
- name: Test WER
type: wer
value: 56.3
- name: Test CER
type: cer
value: 14.3
Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.9643
- Wer: 0.5037
- Cer: 0.1278
Evaluation
The model can be evaluated using the attached eval.py
script:
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-hsb-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config hsb
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 |
2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 |
1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 |
1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 |
0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 |
0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 |
0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 |
0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 |
0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 |
0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 |
0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 |
0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 |
0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 |
0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 |
0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 |
0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 |
0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 |
0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 |
0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 |
0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 |
0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 |
0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 |
0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 |
0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 |
0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0