test / README.md
cor-c's picture
layoutlmv3-finetuned-FUSND_1000
c895da1 verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd-layoutlmv3
          type: funsd-layoutlmv3
          config: funsd
          split: test
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.8808265257087938
          - name: Recall
            type: recall
            value: 0.910581222056632
          - name: F1
            type: f1
            value: 0.895456765999023
          - name: Accuracy
            type: accuracy
            value: 0.8507072387970998

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5799
  • Precision: 0.8808
  • Recall: 0.9106
  • F1: 0.8955
  • Accuracy: 0.8507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3333 100 0.6686 0.7452 0.8251 0.7831 0.7535
No log 2.6667 200 0.4724 0.8064 0.8713 0.8376 0.8389
No log 4.0 300 0.4922 0.8612 0.8942 0.8774 0.8481
No log 5.3333 400 0.4632 0.8587 0.8997 0.8787 0.8521
0.544 6.6667 500 0.4850 0.8632 0.9031 0.8827 0.8474
0.544 8.0 600 0.5024 0.8744 0.8992 0.8866 0.8451
0.544 9.3333 700 0.5394 0.8768 0.9155 0.8957 0.8565
0.544 10.6667 800 0.5647 0.8800 0.9146 0.8970 0.8550
0.544 12.0 900 0.5798 0.8847 0.9106 0.8974 0.8545
0.1288 13.3333 1000 0.5799 0.8808 0.9106 0.8955 0.8507

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.19.1