metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- genbed
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-bem-genbed-f-model
results: []
mms-1b-all-bem-genbed-f-model
This model is a fine-tuned version of facebook/mms-1b-all on the GENBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.1823
- Wer: 0.3431
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.6556 | 0.1370 | 100 | 0.5951 | 0.6643 |
0.4415 | 0.2740 | 200 | 0.2734 | 0.4565 |
0.3448 | 0.4110 | 300 | 0.2482 | 0.4289 |
0.3459 | 0.5479 | 400 | 0.2392 | 0.4149 |
0.3184 | 0.6849 | 500 | 0.2304 | 0.4085 |
0.3058 | 0.8219 | 600 | 0.2372 | 0.4108 |
0.3077 | 0.9589 | 700 | 0.2271 | 0.4172 |
0.2812 | 1.0959 | 800 | 0.2217 | 0.3983 |
0.3297 | 1.2329 | 900 | 0.2209 | 0.3984 |
0.2817 | 1.3699 | 1000 | 0.2163 | 0.4124 |
0.2927 | 1.5068 | 1100 | 0.2146 | 0.3863 |
0.2806 | 1.6438 | 1200 | 0.2106 | 0.3851 |
0.2574 | 1.7808 | 1300 | 0.2098 | 0.3866 |
0.2829 | 1.9178 | 1400 | 0.2067 | 0.3772 |
0.2764 | 2.0548 | 1500 | 0.2076 | 0.3789 |
0.2635 | 2.1918 | 1600 | 0.2076 | 0.3769 |
0.2761 | 2.3288 | 1700 | 0.2068 | 0.3801 |
0.2854 | 2.4658 | 1800 | 0.1994 | 0.3645 |
0.2557 | 2.6027 | 1900 | 0.2016 | 0.3861 |
0.2717 | 2.7397 | 2000 | 0.2011 | 0.3734 |
0.2504 | 2.8767 | 2100 | 0.1989 | 0.3674 |
0.2606 | 3.0137 | 2200 | 0.1990 | 0.3835 |
0.2583 | 3.1507 | 2300 | 0.2028 | 0.3666 |
0.2591 | 3.2877 | 2400 | 0.1952 | 0.3507 |
0.2408 | 3.4247 | 2500 | 0.1988 | 0.3637 |
0.2485 | 3.5616 | 2600 | 0.1972 | 0.3593 |
0.2474 | 3.6986 | 2700 | 0.1949 | 0.3534 |
0.2398 | 3.8356 | 2800 | 0.1959 | 0.3697 |
0.2512 | 3.9726 | 2900 | 0.1906 | 0.3559 |
0.2266 | 4.1096 | 3000 | 0.1905 | 0.3482 |
0.2538 | 4.2466 | 3100 | 0.1916 | 0.3521 |
0.2268 | 4.3836 | 3200 | 0.1914 | 0.3895 |
0.2249 | 4.5205 | 3300 | 0.1897 | 0.3417 |
0.2416 | 4.6575 | 3400 | 0.1877 | 0.3458 |
0.2421 | 4.7945 | 3500 | 0.1872 | 0.3412 |
0.244 | 4.9315 | 3600 | 0.1855 | 0.3528 |
0.2371 | 5.0685 | 3700 | 0.1871 | 0.3447 |
0.2383 | 5.2055 | 3800 | 0.1833 | 0.3523 |
0.2409 | 5.3425 | 3900 | 0.1886 | 0.3487 |
0.2312 | 5.4795 | 4000 | 0.1848 | 0.3438 |
0.2261 | 5.6164 | 4100 | 0.1866 | 0.3469 |
0.2169 | 5.7534 | 4200 | 0.1841 | 0.3376 |
0.2283 | 5.8904 | 4300 | 0.1865 | 0.3412 |
0.2182 | 6.0274 | 4400 | 0.1823 | 0.3431 |
0.2141 | 6.1644 | 4500 | 0.1858 | 0.3403 |
0.2127 | 6.3014 | 4600 | 0.1876 | 0.3356 |
0.229 | 6.4384 | 4700 | 0.1863 | 0.3361 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0