metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- genbed
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-bemgen-combined-model
results: []
mms-1b-bemgen-combined-model
This model is a fine-tuned version of facebook/mms-1b-all on the GENBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2591
- Wer: 0.4134
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.7553 | 0.0516 | 100 | 0.8774 | 0.8476 |
0.5648 | 0.1031 | 200 | 0.3408 | 0.5032 |
0.4827 | 0.1547 | 300 | 0.3261 | 0.4930 |
0.4321 | 0.2063 | 400 | 0.3036 | 0.4854 |
0.4168 | 0.2579 | 500 | 0.2989 | 0.4783 |
0.3965 | 0.3094 | 600 | 0.2907 | 0.4513 |
0.4199 | 0.3610 | 700 | 0.2926 | 0.4718 |
0.3975 | 0.4126 | 800 | 0.2886 | 0.4459 |
0.3839 | 0.4642 | 900 | 0.2908 | 0.4722 |
0.3673 | 0.5157 | 1000 | 0.2836 | 0.4445 |
0.3777 | 0.5673 | 1100 | 0.2784 | 0.4365 |
0.3764 | 0.6189 | 1200 | 0.2791 | 0.4278 |
0.3918 | 0.6704 | 1300 | 0.2757 | 0.4251 |
0.3669 | 0.7220 | 1400 | 0.2721 | 0.4182 |
0.377 | 0.7736 | 1500 | 0.2728 | 0.4757 |
0.4174 | 0.8252 | 1600 | 0.2684 | 0.4242 |
0.3641 | 0.8767 | 1700 | 0.2649 | 0.4195 |
0.3882 | 0.9283 | 1800 | 0.2647 | 0.4125 |
0.3861 | 0.9799 | 1900 | 0.2668 | 0.4425 |
0.3647 | 1.0315 | 2000 | 0.2675 | 0.4246 |
0.3467 | 1.0830 | 2100 | 0.2629 | 0.4098 |
0.3579 | 1.1346 | 2200 | 0.2587 | 0.4186 |
0.3544 | 1.1862 | 2300 | 0.2609 | 0.4127 |
0.35 | 1.2378 | 2400 | 0.2592 | 0.4062 |
0.3519 | 1.2893 | 2500 | 0.2591 | 0.4135 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0