File size: 5,604 Bytes
29bdfa3 c3fd341 29bdfa3 36dec03 29bdfa3 29880fd c3fd341 11912af 4065b4d 36dec03 1f3a8cc 3105ad4 0a9efbe 3849685 1f3a8cc 3105ad4 c1b63f5 36dec03 d6c1fd3 36dec03 0cd4c39 cad97e9 abc65e7 09ea439 0cd4c39 d6c1fd3 4065b4d 40f8719 3849685 40f8719 3849685 40f8719 ac15cfd 3849685 17c39c9 3849685 40f8719 3849685 9a06795 6bee593 9a06795 4065b4d 29880fd f218129 4065b4d 29880fd baf4576 29880fd 38f5908 fa37336 09ea439 7d4d81d dc5d441 7d4d81d 8dbfd55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: cc-by-nc-4.0
inference: false
language:
- ja
---
# weblab-10b-instruction-sft-GPTQ
Original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft) which is a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters created by matsuo-lab
Takeshi Kojima.
This model is a quantized(miniaturized) version of the original model(21.42GB).
There are currently two well-known quantization version of original model.
(1)GPTQ version(This model. 6.3 GB)
The size is smaller and the execution speed is faster, but the inference performance may be a little worse than original model.
At least one GPU is currently required due to a limitation of the Accelerate library.
So this model cannot be run with the huggingface space free version.
You need autoGPTQ library to use this model.
(2)llama.cpp version(gguf)([matsuolab-weblab-10b-instruction-sft-gguf](https://huggingface.co/mmnga/matsuolab-weblab-10b-instruction-sft-gguf) 6.03GB)
created by mmnga.
You can use gguf model with llama.cpp at cpu only machine.
But maybe gguf model little bit slower then GPTQ especialy long text.
# How to run.
## Local PC
You can use [text-generation-webui](https://github.com/oobabooga/text-generation-webui) to run this model fast(about 16 tokens/s on my RTX 3060) on your local PC.
![text-generation-webui-sample](./text-generation-webui-sample.png "text-generation-webui")
The explanation of [how to install text-generation-webui in Japanese is here.](https://webbigdata.jp/post-19926/).
### colab with GUI
You can try this model interactively in the free version of Colab.
[weblab-10b-instruction-sft-GPTQ-text-generation-webui-colab](https://github.com/webbigdata-jp/python_sample/blob/main/weblab_10b_instruction_sft_GPTQ_text_generation_webui_colab.ipynb)
![text-generation-webui-sample](./text-generation-webui-colab-sample.png "text-generation-webui-colab")
### colab simple sample code
Currently, models may behave differently on local PC and Colab. On Colab, the model may not respond if you include instructional prompts.
[Colab Sample script](https://github.com/webbigdata-jp/python_sample/blob/main/weblab_10b_instruction_sft_GPTQ_sample.ipynb)
If you get an error (something not found or something is not defined) in the script below, please refer to the official documentation and Colab samples and specify a specific version.
```
pip install auto-gptq
```
```
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
quantized_model_dir = "dahara1/weblab-10b-instruction-sft-GPTQ"
model_basename = "gptq_model-4bit-128g"
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir,
model_basename=model_basename,
use_safetensors=True,
device="cuda:0")
prompt_text = "スタジオジブリの作品を5つ教えてください"
prompt_template = f'以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{prompt_text}\n\n### 応答:'
tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
print(tokenizer.decode(output[0]))
```
### How to make finetune data(LoRA)
There is a LoRA finetune code sample in finetune_sample directory.
please read [README.mb](https://huggingface.co/dahara1/weblab-10b-instruction-sft-GPTQ/blob/main/finetune_sample/README.md)
### Other AutoGPTQ documents
https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
### Benchmark
The results below are preliminary. The blank part is under measurement.
Also, the score may change as a result of more tuning.
* **Japanese benchmark**
- *We used [Stability-AI/lm-evaluation-harness + gakada's AutoGPTQ PR](https://github.com/webbigdata-jp/lm-evaluation-harness) for evaluation. ([Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable) + [gakada's AutoGPTQ PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/519))*
- *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.*
- *model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
- *The number of few-shots is 3,3,3,2.*
| Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | model |
| :-- | :-- | :-- | :-- | :-- | :-- | :-- |
| weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 | [original model](https://huggingface.co/matsuo-lab/weblab-10b) |
| weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 | [original instruction model](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft) |
| *weblab-10b-instruction-sft-GPTQ first tuning* | 69.72 | 74.53 | 41.70 | 89.95 | 72.69 | deleted |
| *weblab-10b-instruction-sft-GPTQ second tuning* | 74.59 | 74.08 | 60.72 | 91.85 | 71.70 | deleted |
| *weblab-10b-instruction-sft-GPTQ third tuning* | 77.62 | 73.19 | 69.26 | 95.91 | 72.10 | current model. replaced on August 26th |
| *weblab-10b-instruction-sft-GPTQ 4th tuning* | - | - | 14.5 | 85.46 | | abandoned |
## about this work
- **This Quantization work was done by :** [webbigdata](https://webbigdata.jp/).
- [related documentation like fine-turning in Japanesse is here.](https://webbigdata.jp/post-20104/) |